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Abstract: The problem of robust stabilization is considered for a class of systems
with the delayed state perturbations, uncertainties, and external disturbances. It is
assumed that the upper bounds of the delayed state perturbations, uncertainties,
and external disturbances, are unknown. An improved adaptation law with σ–
modification is first introduced to estimate these unknown bounds. Then, by
making use of the updated values of the unknown bounds, a class of adaptive
robust output feedback controllers is proposed. On the basis of the strictly positive
realness of the nominal system, it is also shown from the Kalman–Yakubovitch
lemma that the solutions of the resulting adaptive closed–loop time-delay system
can be guaranteed to be uniformly bounded, and the states decreases uniformly
asymptotically to zero. Finally, a numerical example is given to demonstrate the
validity of the results. Copyright c 2006 IFAC

Keywords: Adaptive robust control, time–delay systems, asymptotic stability,
output feedback.

1. INTRODUCTION

Many practical control problems, such as those
arising in chemical processes, hydraulics and
rolling mills, involve time–delay systems, con-
nected with measurement of system variables,
physical properties of the equipment, signal trans-
mission, and so on. The existence of delay is fre-
quently a source of instability.

On the other hand, it is well known that some
uncertain parameters and disturbances are of-
ten included in practical control systems with
time–delay due to modeling errors, measurement
errors, linearization approximations, and so on.
Therefore, the problem of robust stabilization
of uncertain dynamical systems with time–delay
has received considerable attention of many re-
searchers (see, e.g., (Cheres et al., 1989), (Wu and
Mizukami, 1994), (Wu and Mizukami, 1996), and
the references therein).

In the control literature, for dynamical systems
with the delayed state perturbations, uncertain-
ties, and external disturbances, where the system

state vector is available, the upper bounds of the
vector norms on the delayed state perturbations,
uncertainties, and external disturbances, are gen-
erally supposed to be known, and such bounds are
employed to construct some types of stabilizing
state feedback controllers (see, e.g., (Cheres et
al., 1989), (Wu and Mizukami, 1996) for time–
delay systems). However, in a number of prac-
tical control problems, such bounds may be un-
known, or be partially known. Therefore, for such
a class of uncertain time–delay systems whose
uncertainty bounds are partially known, adaptive
control schemes should be introduced to update
these unknown bounds (see, e.g., (Wu, 2000),
(Wu, 2002), (Wu, 2004) for time–delay systems).
On the other hand, in many practical control
problems, the states of the systems to be con-
trolled may also be unknown or cannot be mea-
sured. Therefore, an output feedback controller
should be designed to control such a class of dy-
namical systems.
In this paper, the problem of robust stabilization
is considered for a class of systems with the de-
layed state perturbations, uncertainties, and ex-
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ternal disturbances. It is assumed that the up-
per bounds of the delayed state perturbations,
uncertainties, and external disturbances, are un-
known, and that the states of the systems to be
controlled are not measured. The purpose of the
paper is to develop a stabilizing adaptive robust
output feedback controller. For this, an improved
adaptation law with σ–modification is employed
to estimate the unknown bounds of the delayed
state perturbations, uncertainties, and external
disturbances. Then, by making use of the updated
values of these unknown bounds, a class of output
feedback controllers is constructed . On the basis
of the strictly positive realness of the nominal
system, it is shown from the Kalman–Yakubovitch
lemma that by using the proposed adaptive robust
output feedback controller, the solutions of the
resulting adaptive closed–loop time–delay system
can be guaranteed to be uniformly bounded, and
the states decreases uniformly asymptotically to
zero.

2. PROBLEM FORMULATION

Consider a class of uncertain time–delay systems
described by

dx(t)
dt

=
[
A+ ∆A(υ, t)

]
x(t)

+
r∑

j=1

∆Ej(ζ, t)x(t − hj)

+
[
B + ∆B(ξ, t)

]
u(t) + q(ν, t) (1a)

y(t) =Cx(t) (1b)

where t R is the “time”, x(t) Rn is the
current value of the state, u(t) Rm is the control
input, y(t) Rp is the output vector, A, B, C,
are constant matrices of appropriate dimensions,
∆A(·), ∆B(·), ∆Ej(·), j = 1, 2, . . . , r, represent
the system uncertainties and are assumed to be
continuous in all their arguments, and the vector
q(·) is the external disturbance, which is also
assumed to be continuous in all their arguments.
Moreover, the uncertain parameters (υ, ξ, ζ, ν)
Ψ RL are Lebesgue measurable and take values
in a known compact bounding set Ω. In addition,
the time delays hj, j = 1, 2, . . . , r, are assumed to
be any positive constants which are not required
to be known for the system designer.

The initial condition for system (1) is given by

x(t) = χ(t), t [t0 − h̄, t0] (2)

where χ(t) is a continuous function on [t0 − h̄, t0],
and h̄ := max

{
hj , j = 1, 2, . . . , r

}
.

Furthermore, a nominal system is described by

dx(t)
dt

= Ax(t) +Bu(t), y(t) = Cx(t) (3)

For the uncertain time–delay systems described
above, an output feedback controller u(t) is
introduced as follows.

u(t) = p(y(t), t) (4)

where p(·) : Rp × R Rm is a continuous
function.

Now, the main objective of this paper is to syn-
thesize an output feedback controller u(t) that
can guarantee the stability of system (1) in the
presence of the delayed state perturbations, un-
certainties, and external disturbances.

Assumption 2.1. The pair {A, B} given in (1)
is completely controllable.

Assumption 2.2. For all (υ, ξ, ζ, ν) Ψ ,
there exist some continuous and bounded matrix
functions H(·), Hj(·), E(·), w(·), of appropriate
dimensions such that

∆A(υ, t) =B(t)H(υ, t)

∆Ej(ζ, t) =B(t)Hj(ζ, t), j = 1, 2, . . . , r

∆B(ξ, t) =B(t)E(ξ, t)

q(ν, t) =B(t)w(ν, t)

For convenience, the following notations are in-
troduced which represent the bounds of the un-
certainties and external disturbances.

ρ(t) := max
υ

∥∥H(υ, t)
∥∥

ρj(t) := max
ζ

∥∥Hj(ζ, t)
∥∥, j = 1, 2, . . . , r

µ(t) := min
ξ

[
1
2
λmin

(
E(ξ, t) +E�(ξ, t)

) ]
ρq(t) := max

ν

∥∥w(ν, t)
∥∥

In this paper, the functions ρ(t), ρj(t), µ(t), ρq(t)
assumed to be unknown. Moreover, the uncertain
ρ(t), ρj(t), µ(t), ρq(t) are also assumed, without
loss of generality, to be uniformly continuous and
bounded for any t R+.

By employing the notations given above, for sys-
tem (1), the following assumption is introduced.

Assumption 2.3. For every t t0, µ(t) > − 1.

Remark 2.1. It is well known that Assumption
2.1 is standard and denotes the internally stabi-
lizability of the nominal system, i.e., the system
in the absence of uncertainties and external dis-
turbances. Assumption 2.2 defines the matching
condition about the uncertainties and external
disturbances, and is a rather standard assumption
for robust control problem (see, e.g., (Cheres et
al., 1989), (Wu, 2000), (Wu and Mizukami, 1996),
(Wu, 2002), (Choi and Kim, 1993) ). On the
other hand, Assumption 2.3 is also standard, and
can be regarded as a necessary condition for ro-
bust stability of uncertain dynamical systems (see,
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e.g., (Cheres et al., 1989), (Wu, 2000), (Choi and
Kim, 1993), and the references relative to robust
stabilization of uncertain systems).

Moreover, for the nominal systems described by
(3), the following assumption is also introduced.

Assumption 2.4. For the nominal system de-
scribed by (3), there exists a matrix F Rm×p

such that the transfer function matrix

T (s) = FC
(
sI − A

)−1
B

is strictly feedback positive real (SFPR). There-
fore, it follows from the Kalman–Yakubovitch
lemma (see, e.g., (Narendra and Taylor, 1973),
(Narendra and Annaswamy, 1989), (Khalil, 1996)
) that there exist the matrices P Rn×n, Q
Rn×n, K Rm×n, P = P� > 0, Q = Q� > 0
satisfying

(A+BK)� P + P (A+BK) = −Q (5)

Re
[
λ (A+BK)

]
< 0 (6)

such that
FC = B�P (7)

Remark 2.2. Assumption 2.4 means that the
nominal system is output feedback stabilizable.
Indeed, in order to guarantee the stability of an
uncertain system by the output feedback con-
trollers, it is necessary that its nominal system can
be stabilized by using uncorrupted output signal.

Remark 2.3. In a recent paper (Wu, 2000), a
memoryless adaptive robust state feedback con-
troller is proposed for a class of uncertain time–
delay systems. It should be pointed out that the
systems considered in (Wu, 2000) do not involve
the uncertainty of input gain, and external distur-
bances, and the adaptive robust state feedback
controllers proposed in (Wu, 2000) stabilize the
systems only in the sense of uniform ultimate
boundedness. In this paper, the purpose of the
paper is to propose a class of adaptive robust
output feedback controllers for system (1). It will
be also shown that by employing the proposed
controllers, one can guarantee the asymptotic sta-
bility, instead of the ultimate boundedness, of the
considered systems.

On the other hand, it follows from Assumption
2.1 that there exists always a matrix K such that
(6) holds. In particular, if one chooses K as

K = −
(
1

/
2
)
η B�P

where η is any positive constant, then the Lya-
punov equation, described by (5), is reduced to
the algebraic Riccati equation of the form

A�P + PA − ηPBB�P = −Q (8)

It is obvious from Assumption 2.1 that for any
positive definite matrix Q Rn×n, there exists
an unique positive definite matrix P Rn×n as
the solution of (8).

3. MAIN RESULTS

In this section, since the bounds ρ(t), ρj(t), µ(t),
ρq(t) have been assumed to be uniformly con-
tinuous and bounded for any t R+, it can be
supposed that there exist some positive constants
ρ∗, ρ∗j , µ

∗, ρ∗q , which are defined by

ρ∗ := max
{
ρ(t) : t R+

}
(9a)

ρ∗j := max
{
ρj(t) : t R+

}
(9b)

µ∗ := min
{
µ(t) : t R+

}
> − 1 (9c)

ρ∗q := max
{
ρq(t) : t R+

}
(9d)

Here, it is worth pointing out that the constants
ρ∗, ρ∗j , µ

∗, ρ∗q , are still unknown. Therefore, such
unknown bounds can not be directly employed to
construct stabilizing output feedback controllers.

Without loss of generality, the following definition
is also introduced :

ψ∗ :=
1

1 + µ∗

(
1+η−1α (ρ∗)2+

r∑
j=1

η−1α
(
ρ∗j

)2
)

(10a)

φ∗ :=
ρ∗q

1 + µ∗ (10b)

where η are α are any positive constants. It
is obvious from (10) that ψ∗ and φ∗ are two
unknown positive constants.

Now, the following adaptive robust output feed-
back controller is proposed :

u(t) = p1(y(t), t) + p2(y(t), t) (11a)

where p1(·) and p2(·) are given by

p1(y(t), t) = −
1
2
ηψ̂(t)Fy(t) (11b)

p2(y(t), t) = −
φ̂2(t)Fy(t)

Fy(t) φ̂(t) + σ(t)
(11c)

and where σ(t) R+ is any positive uniform
continuous and bounded function which satisfies

lim
t→∞

t∫
t0

σ(τ)dτ σ̄ < (11d)

where σ̄ is any constant. In addition, F Rm×p

is the output feedback gain matrix.

In particular, ψ̂(t) and φ̂(t) in (11) are, respec-
tively, the estimates of the unknown ψ∗ and φ∗,
which are, respectively, updated by the following
adaptive laws:

dψ̂(t)
dt

= − γ1 σ(t)ψ̂(t) + γ1η Fy(t) 2 (12a)

dφ̂(t)
dt

= − γ2 σ(t)φ̂(t) + 2γ2 Fy(t) (12b)

where γ1 and γ2 are any positive constants, and
the initial conditions ψ̂(t0), φ̂(t0) are finite.
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Thus, applying the output feedback controller
given in (11) to (1) yields an uncertain closed–
loop time–delay system of the form:

dx(t)
dt

= [A+ ∆A(υ, t)] x(t)

+
r∑

j=1

∆Ej(ζ, t)x(t − hj)

+
[
B + ∆B(ξ, t)

]
p(y(t), t) + q(ν, t) (13)

where p(·) is given in (11).

On the other hand, letting

ψ̃(t) = ψ̂(t) − ψ∗, φ̃(t) = φ̂(t) − φ∗

one can rewrite (12) as the following error system

dψ̃(t)
dt

= − γ1 σ(t)ψ̃(t) + γ1η Fy(t) 2

− γ1 σ(t)ψ∗ (14a)

dφ̃(t)
dt

= − γ2 σ(t)φ̃(t) + 2γ2 Fy(t)

− γ2 σ(t)φ∗ (14b)

In the following, by (x, ψ̃, φ̃)(t) one denote a
solution of the uncertain closed–loop time–delay
system and the error system. Then, one can have
the following theorem.

Theorem 3.1. Consider the adaptive closed–
loop time–delay dynamical system, described by
(13) and (14). Suppose that Assumptions 2.1
to 2.4 are satisfied. Then, the solutions (x, ψ̃, φ̃)
(t; t0, x(t0), ψ̃(t0), φ̃(t0)) to the closed-loop time–
delay system described by (13) and the error
system described by (14) are uniformly bounded
and

lim
t→∞ x(t; t0, x(t0)) = 0 (15)

Proof : For the adaptive closed–loop time–delay
system described by (13) and (14), one first define
a Lyapunov–Krasovskii functional candidate as
follows.

V (x,Ψ) = x�(t)Px(t)

+
r∑

j=1

α−1

t∫
t−hj

x�(τ)x(τ)dτ

+
1
2

(
1 + µ∗)Ψ�(t)Γ−1Ψ(t) (16)

where P is the solution to (8), Ψ(·) := [ψ(·) φ(·)]�,
and Γ−1 := diag{γ−1

1 , γ−1
2 }.

Let (x(t),Ψ(t)) be the solution to (13) and (14) for
t t0. Then by taking the derivative of V (·) along
the trajectories of (13) and (14) it is obtained that
for t t0,

dV (x,Ψ)
dt

= x�(t)
[
A�P + PA

]
x(t)

+2x�(t)P
r∑

j=1

∆Ej(ζ, t)x(t− hj)

+2x�(t)P∆A(υ, t)x(t)

− ηψ̂(t)x�(t)P
[
B + ∆B(ξ, t)

]
Fy(t)

−
2φ̂2(t)x�(t)P

[
B + ∆B(ξ, t)

]
Fy(t)

Fy(t) φ̂(t) + σ(t)

+2x�(t)Pq(ν, t)

+
r∑

j=1

α−1
[
x�(t)x(t)− x�(t− hj)x(t− hj)

]

+
(
1 + µ∗)Ψ�(t)Γ−1 dΨ(t)

dt
(17)

From Assumption 2.4 and (7) one can obtain that

Fy(t) = FCx(t) = B�Px(t) (18)

Then, from Assumption 2.2, (17), and (18), by
making use of some manipulations, one can obtain
that for any t t0,

dV (x,Ψ)
dt

− x�(t)Q̃x(t) + 2
(
1+µ∗)σ(t)

+
1
4

(
1+µ∗)σ(t)

[
|ψ∗|2 + |φ∗|2

]
(19)

where

Q̃ := Q − α−1(1 + r)I > 0 (20)

Moreover, letting

x̃(t) :=
[
x�(t) ψ̃(t) φ̃(t)

]�
ε̃ :=

1
4

(
1 + µ∗)(

8 + |ψ∗|2 + |φ∗|2
)

one can obtain from (19) that for any t t0,

dV (x̃(t))
dt

− λmin(Q̃) x(t) 2 + ε̃σ(t) (21)

On the other hand, in the light of (16), there
always exist two positive constants δmin and δmax

such that for any t t0,

γ̃1( x̃(t) ) V (x̃(t)) γ̃2( x̃(t) ) (22)

where

γ̃1( x̃(t) ) := δmin x̃(t) 2

γ̃2( x̃(t) ) := δmax x̃(t) 2

+
r∑

j=1

α−1hj sup
τ∈[t−hj, t]

xj(τ)
2

Now, from (21) and (22), one want to show that
the solutions x̃(t) of (13) and (14) are uniformly
bounded, and that the state x(t) converges asymp-
totically to zero.
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By the continuity of the systems described by
(13) and (14), it is obvious that any solution
(x, ψ̃, φ̃)(t; t0, x(t0), ψ̃(t0), φ̃(t0)) of the system is
continuous.

It follows from (21) and (22) that for any t t0,

0 γ̃1( x̃(t) ) V (x̃(t))

= V (x̃(t0)) +

t∫
t0

V̇ (x̃(τ))dτ

γ̃2( x̃(t0) ) −

t∫
t0

γ̃3( x(τ) )dτ +

t∫
t0

ε̃σ(τ)dτ (23)

where the scalar function γ̃3( x(t) ) is defined as

γ̃3( x(t) ) := λmin(Q̃) x(t) 2 (24)

Therefore, from (23) one can obtain the following
two results. First, taking the limit as t approaches
infinity on both sides of inequality (23), one can
obtain that

lim
t→∞

t∫
t0

γ̃3( x(τ) )dτ γ̃2( x̃(t0) ) + ε̃σ̄ (25)

On the other hand, from (23) one also have

0 γ̃1( x̃(t) ) γ̃2( x̃(t0) ) + ε̃σ̄ (26)

which implies that x̃(t) is uniformly bounded.
Since x̃(t) has been shown to be continuous, it
follows that x̃(t) is uniformly continuous, which
implies that x(t) is uniformly continuous. There-
fore, it follows from the definition that γ̃3( x(t) )
is also uniformly continuous. Applying the Bar-
balat lemma (Slotine and Li, 1991) to inequality
(25) yields that

lim
t→∞ γ̃3( x(t) ) = 0 (27)

Furthermore, since γ̃3(·) is a positive definite
scalar function, it is obvious from (27) that one
can have (15). Thus, one can complete the proof
of this theorem.

Remark 3.1. In the proof of Theorem 3.1, it
is assumed for the constant α to satisfy (20).
However, the adaptive output feedback controllers
given in (11) with (12) are independent of this
constant. Thus, it is not necessary for the designer
to know or choose the constant α. In fact, the
control gain adjusts automatically to counter the
destabilizing effects of the delayed state perturba-
tions, uncertainties, and disturbances.

Remark 3.2. The proposed robust output feed-
back control laws are memoryless, and the adap-
tive schemes given in (12) are independent of the
time delays. Therefore, in the light of the proof
given above, it can be known that the time–delay
constants hj , j = 1, 2, . . . , r, are not required to
be known for the system designer.

4. ILLUSTRATIVE EXAMPLE

Consider the following numerical example.

dx(t)
dt

=
([

1 3
0 2

]
+ ∆A(υ, t)

)
x(t)

+
([

0
1

]
+ ∆B(ξ, t)

)
u(t)

+
3∑

j=1

∆Ej(ζ, t)x(t− hj) + q(ν, t)

(28a)

y(t) =
[
1 2

]
x(t) (28b)

where

∆A(υ, t) =

[
0 0
υ(t) 2υ(t)

]
, ∆B(ξ, t) =

[
0
ξ(t)

]

∆E1(ζ, t) =

[
0 0

0.2ζ(t) 0.5ζ(t)

]

∆E2(ζ, t) =

[
0 0
0 0.3ζ(t)

]

∆E3(ζ, t) =

[
0 0

0.5ζ(t) 0

]
, q(ν, t) =

[
0

0.5ν(t)

]

The problem is to determine a control law in the
form (11) with (12), that will stabilizes the time–
delay system described by (28) in the presence
of the delayed state perturbations, uncertainties,
and external disturbances.

It can known from (28) that if the output control
gain matrix is given by

F = 2

then its transfer function matrix

T (s) = FC(sI − A)−1B

is strictly positive real ((Narendra and Taylor,
1973), (Narendra and Annaswamy, 1989), (Khalil,
1996)).

Thus, one can construct an adaptive robust out-
put feedback controller. In this numerical exam-
ple, for the adaptation laws and output feedback
controller, one select the following parameters:

η = 2, γ1 = 0.5, γ2 = 0.2

σ(t) = 20 exp{− 0.5t }

Therefore, for uncertain time–delay system (28),
from (11) with (12) one can obtain an adaptive
robust output feedback controllers, by which the
system state x(t) can decrease uniformly asymp-
totically to zero.
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Fig. 1. Response of state variable x(t).

Time
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0

4

8

12

Fig. 2. History of the updating parameters ψ̂(t)
(solid) and φ̂(t) (dash).

For simulation, the uncertain parameters and ini-
tial conditions are given as follows.

υ(t) = 0.2 sin(3t), ξ = 0.3 cos(5t)

ζ = 0.5 sin(2t), ν = 0.2 sin(3t)

h1 = 1.0, h2 = 2.0, h3 = 3.0

x(t) = [3.0 cos(t) 2.0 cos(t)]�, t [− h̄, 0]

ψ̂(0) = 8.0, φ̂(0) = 10.0

With the chosen parameter settings, the results of
simulation are shown in Fig.1 and Fig.2 for this
numerical example.

It can be observed from Fig.1 that the adaptive
robust output feedback controllers can indeed sta-
bilize system (34), and the states x(t) decrease
asymptotically to zero. On the other hand, it can
be known from Fig.2 that similar to the conven-
tional adaptation laws with σ–modification, the
improved ones make the estimate values of the
unknown parameters decreasing.

5. CONCLUDING REMARKS

The problem of robust stabilization has been
considered for a class of systems with the de-
layed state perturbations, uncertainties, and ex-
ternal disturbances. In this paper, It has been

assumed that the upper bounds of the delayed
state perturbations, uncertainties, and external
disturbances, are unknown, and that the states
of the systems to be controlled are not measured.
An improved adaptation law with σ–modification
have been introduced to estimate these unknown
bounds. Then, by making use of the updated
values of these unknown bounds. a class of adap-
tive robust output feedback controllers has been
constructed. It has also been shown from the
Kalman–Yakubovitch lemma that the solutions
of the resulting adaptive closed–loop time-delay
dynamical system can be guaranteed to be uni-
formly bounded, and the states decreases uni-
formly asymptotically to zero.
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