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Computadoras, Universidad Nacional del Sur, Av. Alem

1253; (8000) Bah́ıa Blanca, Argentina
∗∗ Signal Processing Laboratory, Smart and Novel Radios
(SMARAD) Center of Excellence, Helsinki University of
Technology, P.O. BOX 3000, FIN-02015 HUT, Finland

Abstract: In this paper the problem of on-line identification and adaptive control
of Neutralization reactor is studied. It is used the fact that this process can be
modeled as a Wiener type system. An recursive identification algorithm for Wiener
systems is proposed whose linear and nonlinear parts are modeled using a Laguerre
and Piecewise Linear basis functions, respectively. The model obtained is used to
adapt the parameters of a controller designed for the specific structure of the
model. The results show good performance when compared with other similar
schemes found in the literature.

Keywords: Adaptive filtering, Nonlinear control, Adaptive Control.

1. INTRODUCTION

In the last decades, many contributions for con-
troller design have been based on the linear model
assumption. However, in some cases it is difficult
to represent a given process using a linear model.
This is the case when the system is highly nonlin-
ear and the operating point changes along a wide
region, or when the process is nonstationary, i.e.,
the characteristics change with time.

In these cases, the controller design can be per-
formed using special techniques, such as exact
linearization, nonlinear model predictive control,
or other special purpose procedures (Ogunnaike
and Ray, 1994).

One of the solutions to control such kind of sys-
tems is adaptive control, where the parameters
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of a linear controller are adjusted to follow the
variations of the process behavior. Several con-
trol schemes assume a model structure whose pa-
rameters are identified on-line using an adaptive
identification algorithm. The identified model pa-
rameters are then used to adjust the controller
parameters.

It is well known that some systems can be de-
scribed by a linear dynamic model followed by a
static nonlinearity, i.e., a Wiener system (Pearson
and Pottmann, 2000; Pearson, 2003). In this pa-
per, an algorithm for adaptive control for Wiener
models is presented.

The first step in the construction of an adaptive
control algorithm is to obtain an efficient adap-
tive identification scheme. In this paper we use
the identification methodology of block-oriented
models introduced by Bai (1998). The algorithm is
based on least-squares estimation (LSE) and sin-
gular value decomposition (SVD). The approach
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is useful only for the single input/single output
(SISO) case due to the particular parameteriza-
tion used. Gómez and Baeyens (2004) extended
the results of Bai to include a more general param-
eterization that enables the use of multiple input/
multiple output (MIMO) systems.

In this paper we propose a new approach for adap-
tive control of Wiener type systems. In particular
we propose the use of a Laguerre description for
the linear part and a Piecewise Lineal description
for the nonlinear gain. For this parametrization,
an adaptive identification scheme is proposed ex-
tending the idea of Gómez and Baeyens (2004).
Using this approach, the inverse of the nonlin-
earity is directly identified, avoiding the inversion
problem. After that, the structure of the Wiener
model is fully exploited to obtain all possible ad-
vantages.

The performance of the proposed algorithm is
tested in the control of a neutralization reactor.
It is well known that the control of a pH pro-
cesses is particularly difficult. The main reason is
the strong nonlinearity involved. The slope of a
chemical system’s titration curve can vary several
orders of magnitude over a modest range of pH
values, causing the overall process gain to change
accordingly. The control of this kind of processes
can be performed by several nonlinear schemes (
Norquay et al., 1998; Norquay et al., 1999; Gerkšič
et al., 2000; Lussón et al., 2003a; Biagiola et al.,
2004; Akesson et al., 2005). The basic assumptions
of these schemes are a fixed Wiener structure of
the model and a fixed nonlinear controller. Sev-
eral control strategies were used (including gain
scheduling, model predictive control, H∞, etc.).

However, when perturbations are applied to the
process, a fixed Wiener model does not longer
represents adequately the process. For example,
the titration curve change drastically (Kalafatis
et al., 2005b). These move to some authors to
include some robustness ideas in the controller
design (Lussón et al., 2003b), to use feedforward
controllers (Kalafatis et al., 2005b) or to use
adaptive identification algorithms (Kalafatis et
al., 2005a). Pajunen (1987 and 1992) propose two
adaptive control schemes for the control of Wiener
systems. However, in the identification algorithms
of these schemes, the Wiener structure is lost,
resulting in a large number of parameters for
the process model. In this paper we propose, as
mentioned above, a more efficient algorithm to
solve for adaptive control.

The paper is organized as follows. In Section 2
a description of model structure and adaptive
identification procedure are presented. Section 3
describes the adaptive control algorithm and dis-
cusses some implementation details. A simulation
example describing the application of this algo-
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Fig. 1. Laguerre-PWL Wiener Model.

rithm to control a pH neutralization reactor is
detailed in Section 4. Finally, in Section 5 the
conclusions are presented.

2. ADAPTIVE IDENTIFICATION SCHEME

2.1 Model Description

We propose in this paper a special description
for the process, where the linear dynamic model
is described by a Laguerre basis series and the
nonlinear static block is modeled as a Piecewise
Linear (PWL) model. This model is illustrated in
Fig. 1. The Laguerre basis allows the use of prior
knowledge about the dominant poles (Wahlberg,
1991; 1994; Lindskog, 1996). This model describes
the linear model with the following basis function
expansion

H(z) =
M∑
i=0

hiLi(z, a) (1)

where

Li(z, a) =
1 − a2

z − a

(
1 − az

z − a

)i−1

(2)

and hi are the parameters of the model, a is a
filter coefficient chosen a priori (Wahlberg, 1991).

For the representation of the static nonlinear gain,
N(·), we use a Piecewise Linear (PWL) descrip-
tion. In general N(·) is a real-valued function of
one variable, i.e., y = N(v) : 1 1, which we
will assume to be invertible. This is a common
assumption in the adaptive identification area
(Wigren, 1994), often to allow a simplification in
the feedback loop design (Lussón et al., 2003a).
For the specific control algorithm that we will use,
we prefer to describe the inverse of this nonlinear-
ity, i.e., v = N−1(y).

PWL functions have proven to be a very powerful
tool in the modeling and analysis of nonlinear
systems (Chua and Ying, 1983; Julián et al.,
1999). It can be proved (Julián et al., 1999)
that any continuous nonlinear function f(v) :

m 1 can be uniquely represented using PWL
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functions. To express the nonlinear function, we
will use a function expansion with basis functions
and parameters

v = cTΛ(y). (3)

We will consider the case where the basis func-
tions that are included in the matrix Λ have been
predetermined, and the values of c are the param-
eters to be estimated. In this paper we use the
orthogonal basis description proposed by Julián
et al. (2000).

Since the basis functions Λ are fixed, the output is
a linear function of the parameters. This allows us
to use linear regression to estimate these param-
eters. The two basic advantages of this approach
are its fast convergence and unique solution.

2.2 Adaptive implementation

Let us define an adaptive algorithm for the identi-
fication of the Wiener model described in previous
section. As can be seen from Fig. 1, the signal v(k)
is given by

v(k) =
M∑
i=0

hiLi[u(k)] (4)

and also

v(k) = N−1[y(k)] = cTΛ[y(k)]

=
N∑

i=0

ciΛi[y(k)] (5)

By equaling both sides of (4) and (5) (including
ε(k) to allow a modeling error), and fixing the
parameter h0 = 1 to overcome the well-known
gain ambiguity in Wiener models, the following
equation is obtained

ε(k) =
N∑

i=0

ciΛi[y(k)] − L0[u(k)] −

M∑
i=1

hiLi[u(k)] = θT (k)φ(k) − L0[u(k)] (6)

where vectors θ(k) and φ(k) are defined as

θ(k) = [c0, c1, c2,···, cN , h1, h2,···, hM ]T (7)

φ(k) = [Λ0[y(k)], Λ1[y(k)],···, ΛN [y(k)],

−L1[u(k)],−L2[u(k)],···,−LM [u(k)]]T . (8)

Next, we consider an stochastic gradient algo-
rithm to estimate recursively the parameters of

the model θ. For this purpose, we use as objective
function Jθ , the instantaneous squared error, i.e.

Jθ [ε(k)] = ε2(k) =
[
θT (k)φ(k) − L0[u(k)]

]2

(9)

The recursion of the stochastic gradient algorithm
that minimizes the above objective function is
given by

θ(k + 1) = θ(k) + µφ(k)ε(k). (10)

where µ is the step size controlling the conver-
gence and final error of θ. A bound on µ to ensure
convergence and an analysis of convergence to a
local stationary point can be found in Figueroa et
al. (2004).

The identification algorithm is summarized in
Table 1. From the implementation point of view,
the initial condition for h is the vector zero and
for c is the parameters that defines the identity
nonlinear function.

Table 1. The adaptive identification al-
gorithm.

Parameters:
M = number of h coefficients
N = number of c coefficients
µ = step size

Data:
u(k) input signal at time k
y(k) output signal at time k

Initialization
h(0) = 0

c(0) = [−1 1 0 · · · 0 − 1]T

For each k,
θ(k) = [c0, · · · , cN , h1, · · · , hM ]T

φ(k) = [Λ0[y(k)], · · · ,
ΛN [y(k)],−L1[u(k)], · · · ,−LM [u(k)]]T

ε(k) = θT (k)φ(k) − L0[u(k)]
θ(k + 1) = θ(k) + µφ(k)ε(k)

3. CONTROLLER DESIGN

In the context of adaptive control, the essential
idea is to identify a process and, based on the
model obtained, adjust the controller parameters
to improve the closed loop performance. For tun-
ing the control parameters any classical strategy
could be used, for example: minimum ITAE, re-
tain constant loop gain, Ziegler-Nichols, Cohen-
Coon, internal model control, etc. (Ogunnaike and
Ray, 1994). In our particular application, we used
a direct synthesis approach, which was modified
to be applied to a Wiener model.

To design the controller, we will follow the prin-
ciple of the nonlinear regulator as presented by
Wigren (1999). Consider the closed-loop system of
Fig. 2. The process is assumed to be represented
by a Wiener model with a nonlinear gain N(·)
that is invertible. We can use the inverse of this
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Fig. 2. The closed loop scheme for known Wiener
Model.

block to extract the nonlinearities outside of the
closed loop. In this way, a linear controller K(z)
should be designed to compensate the behaviour
of the linear dynamic block of the process model.

In our case, the inverse of the nonlinearity is
obtained directly from the identification process.
To design the linear controller, we adopt the direct
synthesis approach (Ogunnaike and Ray, 1994),
applied to the Laguerre model of Eq. (4). The
controller specification is to obtain a closed-loop
pole in ac without offset when the set point is
changed in the form of steps. If the discrete
transfer function of the linear model is called
H(z), and H−1(z) is stable and causal, then the
controller can be defined as

Kh(z) =
ac

z − 1
1

H(z)
. (11)

where the subscript h is included to remark the
dependence of the controller with the parameters
of the Laguerre model. The control algorithm is
summarized in Table 2. A stability analysis for
the fixed controller is similar to the one presented
in Biagiola et al. (2004).

Table 2. The control algorithm.

Parameters:
Coefficients of Laguerre model h.
Coefficients of PWL model c.

Data:
yr(k) set point at time k

For each k,
Obtain y(k) as measure from the process
Compute v(k) = cT Λ[y(k)]
Compute vr(k) = cT Λ[yr(k)]
Compute e(k) = vr(k) − v(k)
Compute u(k) by applying e(k) to Kh(z)
Applied u(k) to the process.

Let us now consider the problem of controlling the
process when the parameters of the Wiener model
are unknown and varying along the operation. We
can use the adaptive identification algorithm in
Section 2 to obtain the parameters of the model,
and use them to adapt the controller coefficients.
This implies that each sample time, both algo-
rithms (Table 1 and Table 2) are executed si-
multaneously. The complete adaptive scheme is
illustrated in Fig. 3. The dotted lines denote the
parameter information flow from the identification
scheme to the compensator. In this formulation,
the role of the measurement noise is essential in
order to ensure the persistent excitation.

N �1(.) K Wiener system N �1(.)
yr e u y

�

Identification

ch

Fig. 3. The control adaptation scheme.

In the next section, this scheme is applied to the
control of a pH neutralization reactor.

4. EXAMPLE: PH NEUTRALIZATION

In order to illustrate the design procedure and
to evaluate the adaptive controller performance,
simulation results were obtained. A chemical pro-
cess with strong nonlinearity was selected. The
example consists of the neutralization reaction
between a strong acid (HA) and a strong base
(BOH) in the presence of a buffer agent (BX)
as described by Galán (2000). The neutralization
takes place in a continuous stirred tank reactor
(CSTR) with a constant volume V .

It is well known that the control of a pH pro-
cesses is particularly difficult. The main reason
is the high nonlinearity involved. The slope of
the titration curve of the chemical system can
vary several orders of magnitude over a modest
range of pH values, causing the overall process
gain to change accordingly. The regions of high
and low slope on the titration curve correspond to
conditions of high and low gain for a pH control
loop, respectively.

In the continuous pH neutralization reactor an
acidic solution, with a time-varying volumetric
flow qA(t) of a composition x1i(t), is neutralized
using an alkaline solution with volumetric flow
qB(t) of known composition made up of base
x2i and buffer agent x3i. Due to the high reac-
tion rates of the acid-base neutralization, chem-
ical equilibrium conditions are instantaneously
achieved. Moreover, assuming that the acid, the
base and the buffer are strong enough, the total
dissociation of the three compounds takes place.

The process dynamics model can be obtained by
considering the electroneutrality condition (which
is always preserved) and through mass balances
of equivalent chemical species (known as chemical
invariants) that were introduced by Gustafsson
and Waller (1983). For this specific case, under
the previous assumptions, the dynamic behavior
of the process can be described considering the
following state variables:

x1 = [A−] (12)

x2 = [B+] (13)
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x3 = [X−] (14)

Therefore, the mathematical model of the process
can be written in the following way (Galán, 2000):

ẋ1 = 1/η (x1i − x1) − 1/V x1qB (15)

ẋ2 = − 1/η x2 + 1/V (x2i − x2)qB (16)

ẋ3 = − 1/η x3 + 1/V (x3i − x3)qB (17)

F (x, ξ) ξ + x2 + x3 − x1 − Kw/ξ −

x3/[1 + (Kx ξ/Kw)] = 0 (18)

where ξ = 10−pH and θ = V/qA. Kw and Kx are
the dissociation constants of the buffer and the
water, respectively. Note that this process is not
strictly a Wiener process, however, it will be use
to illustrate the proposed control. The parameters
of the system represented by Eq. (15)–(18) are
addressed in Table 3. Eq. (18) was deduced by
McAvoy et al., (1972) and takes the standard
form of the widely used implicit expression that
connects the pH value with the states of the
process.

Table 3. Neutralization Parameters.

parameter value

x1i 0.0012 mol HCL/l
x2i 0.0020 mol NaOH/l
x3i 0.0025 mol NaHCO3/l
Kx 10−7 mol/l
Kw 10−14 mol2/l2

qA 1 l/m
V 2.5 l

A Wiener model describing this process has been
presented for several control applications using qB

(manipulated variable) to control the pH (con-
trolled variable), see, e.g., Lussón et al. (2003a)
and Biagiola et al. (2004). However, when per-
turbations are present in the process (qA(t) and
x1i(t)), a simple Wiener model cannot provide an
adequate representation of the plant.

The chosen parameters for our model are a third-
order Laguerre basis with a pole at a = 0.7 to
represent the linear dynamic model, /it i.e. M =
2. To represent the inverse of the nonlinear gain,
the domain of the pH, the range [3, 9.5], is divided
in 10 regions, /it i.e. N = 11. The adaptation step
size is µ = 0.015.

In this particular application, the linear controller
takes the form

K(z) =
ac

(
z3 − 3az2 + 3a2z − a3

)
1 − a2 (a2z2 + a1z + a0) (z − 1)

(19)

where a2 = 1− ah2+a2h3, a1 = h2− 2ah3+a2− 2a,
a0 = h3− ah2+a2 and the closed-loop pole is fixed
at ac = 0.8. In the adaptive adjustment of this
controller, it is important to check the stability at
every iteration. If a pole is outside the unit circle,
it should be replaced by its stable reciprocal.

0 100 200 300 400 500
3

4

5

6

7

8

9

10

 
y

 Time

 Laguerre−CPWL
 Pajunen
 set point

Fig. 4. Simulation results. y = pH as function of
time.
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Fig. 5. Simulation results. u = qb as function of
time.

Now, the results of the proposed adaptive con-
troller are presented, and the performance is com-
pared with that of the Model Reference Adaptive
Technique proposed by Pajunen (1992).

The simulation involve a set point change from
pH1 = 7.7182 to pH2 = 9.7182 at t2 = 25min and
to pH3 = 5.7182 at t3 = 100min. Perturbations
are applied in qA (which is increased from 1 to
1.2 at t = 38min and then reduced to 0.8 at t =
113min) and in x1i (which increases 10 percent
from the original value at t = 63min and then is
reduced 20 percent at t = 138min). In all cases a
uniform noise in the range of ± 0.05 is considered.

Figure 4 illustrates the pH behaviour of the con-
trollers. From this plot it is clear that the per-
formance of the proposed Laguerre-PWL Wiener
adaptive controller is better than the one pro-
posed by Pajunen (1992). For example, our pro-
posed remove completely the offset presented in
the Pajunen scheme. Figure 5 depicts the manip-
ulated variable qB for the proposed algorithm.

An interesting point is to compare the number
of the parameters involved in both approaches.
While the identification of Laguerre-PWL involves
13 parameters, Pajunen’s approach involves 23
parameters. This is because the Model Reference
Adaptive Technique cannot take advantage of the
Wiener structure of the model.
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5. CONCLUSIONS

The problem of on-line identification and adap-
tive control of a neutralization reactor using a
Wiener nonlinear system is studied. The linear
and nonlinear parts are modeled using a Laguerre
and Piecewise Linear basis functions, respectively.
Then, since the fact that model error is linear in
the parameters, an adaptive identification algo-
rithm is presented based on a stochastic gradient
algorithm. Information on the identified model is
used to adjust the parameters of a controller on-
line. The controller is designed based on the spe-
cific structure of the model. The complete scheme
is successfully applied to a simulation example.

REFERENCES

Akesson, B.M., H.T. Toivonen, J.B. Waller and
R.H. Nyströn (2005). Neural network approx-
imation of a nonlinear model predictive con-
troller applied to a pH neutralization process.
Comp. and Chem. Eng. 29, 323–335.

Bai, E. (1998). An optimal two-stage identifica-
tion algorithm for Hammerstein-Wiener non-
linear systems. Automatica 34, 3, 333–338.

Biagiola, S.I., O.E. Agamennoni and J.L. Figueroa
(2004). H∞ control of a wiener type system.
Int. J. of Control 77, 6, 572–583.

Chua, L.O. and L.P. Ying (1983). Canonical
piecewise-linear analysis. IEEE Trans. on
Circuits and Systems CAS-30, 125–140.

Figueroa, J.L., J.E. Cousseau and R. J. P.
de Figueiredo (2004). A simplicial canonical
piecewise linear adaptive filter. Circuits, Sys-
tem and Signal Processing 23, 365–386.

Galán, O. (2000). Robust multi-linear model-based
control for nonlinear plants. PhD thesis. Uni-
versity of Sydney, Australia.
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