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Abstract: In this work, it is presented a contribution to the design of the robust MPC with 
output feedback and input constraints. This work extends existing approaches by 
considering a particular non-minimal state space model, which transforms the output 
feedback strategy into a state feedback strategy. The controller is developed to the case in 
which the system inputs may become saturated. We follow a two stages approach. In the 
off-line stage, a series of unconstrained robust MPCs is obtained by including in the control 
optimization problem, inequality constraints that force the state of the closed-loop system to 
contract along the time. Each of these controllers is associated to particular sets of 
manipulated inputs and controlled outputs. In the existing version of the method, the closed 
loop system involves a state observer that makes the solution to the robust MPC 
optimization problem a time consuming step. In the on-line step of the controller design 
proposed procedure, a sub optimal control law is obtained by combining control 
configurations that correspond to particular subsets of available manipulated inputs. The 
method is illustrated with a simulation example of the process industry. 
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1. INTRODUCTION 
Model predictive control has achieved a remarkable 
popularity in the process industry with thousands of 
practical applications (Qin and Badgwell, 2001). One 
of the reasons of this industrial acceptance is the 
ability of MPC to incorporate constraints in the 
inputs. However, one additional desirable 
characteristic still not attended by commercial MPC 
packages is closed loop stability in the presence of 
model uncertainty. When model uncertainty is 
considered in the synthesis of the predictive 
controller, the existing algorithms usually demand a 
computer effort that is prohibitive for practical 
implementation (Lee and Cooley, 2000). We could 
not find in the control literature a satisfactory 
solution, from the application viewpoint, to the robust 
MPC problem with output feedback and input 
constraints. Rodrigues and Odloak (2000) presented a 
formulation to the robust unconstrained MPC with 
output feedback where stability is achieved through 
the explicit inclusion of a Lyapunov inequality into 
the control optimization problem. Recently, 
Rodrigues & Odloak (2005) extended the method to 
include the switching of active input constraints 
during transient conditions. The controller is designed 
in two steps. The first step is developed off-line and 
results in a set of linear unconstrained MPCs each 
one corresponding to a controllable subsystem with 
previously defined inputs and outputs. The second 
step of the controller design procedure is performed 
on-line and involves the solution to an optimization 
problem that has the same objective function as the 
conventional MPC, but the control actions are 
computed as a convex combination of the linear 

controllers obtained in the first stage of design 
procedure. The main objective of this work is to 
improve the method of Rodrigues and Odloak (2005) 
by proposing an alternative solution to the off-line 
step of the synthesis of the robust MPC. The method 
proposed here is based on a non-minimal state space 
model formulation presented by Maciejowsky (2002) 
and designated by that author as realigned model. It 
will be shown here that the approach leads to a 
significant simplification in the off-line step of the 
design procedure. In the next section, the approach of 
Rodrigues and Odloak (2005) is briefly summarized. 
Then, the realigned model in the incremental form is 
introduced and the optimization problems of the off-
line and on-line steps of the controller synthesis are 
presented. Next, a simulation example is used to 
illustrate the application potential of the new method 
and finally the paper is concluded. 

2 A ROBUST UNCONSTRAINED MPC WITH 
OUTPUT FEEDBACK 

We consider the following discrete time invariant 
model that is written in the incremental form: 

1| |[ ] [ ] ( )k k k kx A x B u k+ = + Δ� �� �   (1) 

| |[ ] [ ]k k k ky C x= �� �     (2) 
where  

nxx ∈� �  is the state of the predicting model, k is the 
present sampling instant, nuu ∈�  is the input, 

( ) ( ) ( 1)u k u k u kΔ = − −  is the input increment, 
nyy ∈�  is the output. A� , B�  and C�  are matrices of 

appropriate dimensions. 
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As the state is not usually measured, they need to be 
updated with the output measurement as follows: 

1| 1 |

1| 1|

[ ] [ ] u( )

{[ ] [ ] }
k k k k

F p k k k k

x A x B k

K y C x
+ +

+ +

= + Δ +

+ −

� �� �
� �

  (3) 

where KF is the gain of the observer that estimates the 
model states and yp is the output of the true plant 
which is represented by a similar model as the one 
represented in Eqs (1) and (2) but with different 
coefficient matrices: 

1| |[ ] [ ] ( )p k k p p k k px A x B u k+ = + Δ   (4) 

1| 1|[ ] [ ]p k k p p k ky C x+ +=    (5) 
Assume now that related to the output reference 
vector ysp, we can define a state reference spv  for the 
plant and predicting model. Consequently, we can 
define errors for these states: e sp

p px v x= −  and 
e spx v x= −� � .

Now, combining Eqs (3), (4) and (5) we obtain the 
plant plus observer model: 

1| 1 |[ ] [ ] ( )e e
k k k kx A x B u k+ + = + Δ   (6) 

where 

2,
e

e e nx
e
p

x
x x

x

� �
� �= ∈
� �� �

�
� ,

2 2( )
,

0
F F p p nx nx

p

I K C A K C A
A A

A
×

� �−
= ∈� �
� �� �

� �
� ,

2( )
,F F p p nx nu

p

I K C B K C B
B B

B
×

� �− +
= − ∈� �

� �� �

� �
�

The cost function of the MPC considered here is 
defined as follows: 

| |( [ ] ) ( [ ] )e T e T
k k k k kJ A x B u Q A x B u u R u= − Δ − Δ + Δ Δ� �

     (7) 
where Q and R are weighting matrices and 

( )

( 1)

u k
u

u k m

Δ� �
� �Δ = � �
� �Δ + −� �

� ,

p

C
CA

A

CA

� �
� �
� �= � �
� �
� �� �

�
��

�
��

1 2

0 0 0 0
0 0 0

0 0

p p p m

CB
CAB CBB

CA B CA B CA B− − −

� �
� �
� �
� �=
� �
� �
� �� �� �

�
�� �
�� �� � �
� � � � �

�� �� ��� � ��
m and p are the input and output horizons. 

The vector of future unconstrained control actions 
can be related to the error on the state of the 
prediction model as follows: 

|[ ]e
MPC k ku K xΔ = � , .m nu nx

MPCK ×∈�  (8) 
Substituting (8) in (6) produces 

1| 1 |
( )e e

MPCk k k k
x A BK N x

+ +
� � � �= +� � � �

�  (9) 

where  

,MPC K MPCK C K=�  [ 0]K nuC I= , [ ]0nxN I=
Consider also the following Lyapunov inequality: 

( ) ( )1 1 0
T

MPC MPCA BK N P A BK N P− −+ + − <� �   (10) 

with  0TP P= >
Applying the Schur’s complement to (10), results:  

( )
( )

0
MPC

T T
MPC

P P A BK N

A BK N P P

� �+
� � >� �+� �� �

�

�
   (11) 

A stable MPC would result from the minimization of 
the objective defined in (7) subject to the constraint 
defined in (11). However, to guarantee the 
contraction of the close-loop error vector, MPCK  and 
P should be fixed and so they need to be computed 
off-line and considering a fixed value for the error 
vector. For instance, they can be computed for an 
error 0

ex�  that corresponds to a step change on the 
desired value of the output. The result is the 
following optimization problem: 

Problem P1 

, ,
min

MPCK Pγ
γ

subject to (11) and 
1

0

0 0

0 0 0

0 0

( ) ( )

( )
0

( ) ( )

 +( )

T e
MPC

e T T e

e T T e T T e
MPC MPC

e T T T e
MPC

B QB R K x

x A QAx

x K x A QBK x

x K B QAx

−� �+
� �

� �� �γ − +
� �� � >
� �+ +� �
� �� �
� �� �� �� �

�

� �

� � �

� �

  (12) 

where γ is a cost bound such kJ γ≤ .
For the operating condition in which none of the input 
constraints becomes active, the control law obtained 
as the solution to Problem P1 results optimal and 
stability of the closed loop system is assured by the 
following theorem (Rodrigues and Odloak, 2000): 

Theorem 1: Suppose that Problem P1 has a feasible 
solution. The resulting control law applied to the 
system defined in Eqs (4) and (5) will be asymptotic 
stable, as long as the system inputs do not become 
saturated. 

Remark 1 
As Inequality (11) is bilinear in the unknown 
variables P and KMPC, Problem P1 has to be solved 
via an iterative algorithm that may be highly 
computer demanding for on-line implementation. 
Rodrigues and Odloak (2005) propose a two stages 
strategy to design and implement the stable MPC with 
output feedback and input saturation. The off-line 
synthesis is based on the solution to Problem P1. The 
on-line step is based on an optimization problem 
where the objective function is the same as the 
control objective used in the off-line step. The on-line 
controller is assumed to be a linear combination of 
the controllers obtained in the off-line step. The 
objective function of the on-line step is the true 
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control objective and the input constraints are 
included in the optimization problem. 

To consider model uncertainty in the controller 
resulting from the solution to Problem P1, observe 
that in matrices A and B defined in Eq. (6), matrices 
Ap and Bp of the true plant are not usually known and 
they are not the same as matrices A�  and B�  of the 
predicting model. Note also that matrices A and B are 
affine in Ap and Bp respectively. The consequence of 
this observation is that, if model uncertainty 
concentrates on Ap and Bp, Problem P1 can be 
extended to produce a controller, which is robust to 
model uncertainty. For this purpose, we assume that 
state matrix Ap and input matrix Bp of the plant model 
defined in Eq. (4) are known to lie in the polytope 
defined in (13). 

( ) ( ), ,
1

, ,
L

p p i p i p i
i

A B A B
=

= λ� ,
1

1
L

i
i=

λ =� , 0iλ ≥ ,

1, ,i L= �   (13) 
Also, let us define 

,

,

( )
0
F F p p i

i
p i

I K C A K C A
A

A
� �−

= � �
� �� �

� �

,

,

( )F F p p i
i

p i

I K C B K C B
B

B
� �− +

= − � �
� �� �

� �

Next, consider the following off-line optimization 
problem 
Problem P2 

, ,
min

MPCK Pγ
γ

subject to (12) written for the nominal model and the 
following constraints 

( )
( )

0
i i K MPC

T T
i i K MPC

P P A B C K N

A B C K N P P

� �+
� � >

+� �� �
1, ,i L= �   (14) 

In the above problem, each of the inequalities 
represented in Inequality (14) corresponds to one of 
the vertices of the polytope defined in (13). Stability 
of the uncertain closed-loop system with the output 

feedback controller defined by Problem P2 is ensured 
by the theorem below (Rodrigues and Odloak, 2000): 

Theorem 2 Consider the system defined in Eqs (4) 
and (5), in which the true plant model matrices are 
unknown but defined by a polytope as in Eq. (13). 
Then, the closed loop system, with the control law 
obtained from the solution to Problem P2, will be 
asymptotically stable, as long as the system inputs do 
not become saturated. 

Observe that in order to Problem P2 to have a 
feasible solution for the uncertain system, it is 
necessary that the system be observable and 
controllable. When one or more of the inputs become 
saturated, this condition may not be attained. Then, 
for the development that follows, it is assumed that 
the unstable and integrating modes of the system 
remains controllable after the saturation of one or 
more inputs. 

3. ROBUST MPC WITH REALIGNED MODEL  
Maciejowski (2002) shows that a suitable state space 
model to be used in the model predictive controller is 
the realigned model. Apart from the disadvantage of 
being a non-minimal representation of the system, this 
model form has the advantage that the state is 
composed of the inputs and outputs of the system at 
present and past time instants. Consequently, with this 
model form, the assumption that the state is perfectly 
known is always true. A consequence of this property 
of the model is that it is not necessary to include both 
the prediction model and the plant model in the 
closed loop representation of the system. To present 
the structure of the model as employed here, assume 
that the system is represented by the following 
equation: 

1 1
( ) ( ) ( )

na nb

i i
i i

y k a y k i b u k i
= =

+ − = −� �

It can be shown that this system can also be 
represented in the following state space form: 

( )

1 2 1 3 2 4 3 1 2 3 4... ...
0 0 0 ... 0 0 0 0 0 ... 0

0 0 0 ... 0 0 0 0 0 ... 0
0 0 0 ... 0 0 0 0 0 ... 0
... ... ... ... ... ... ... ... ... ... ... ...
0 0 0 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
.

na na na nbI a a a a a a a a a a b b b b
I

I
I

I
x k

I
I

I

−− − + − + − + − +

+ =
�
�
�
�
�

( ) ( )

1

0
0
0
...
0
0

0
0

.. ... ... ... ... ... ... ... ... ... ... ... ...
0 0 0 0 0 0 0 0 0 0 0

b

x k u k

I

I

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �+ Δ� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �� � � �� � � ��

where 

( ) ( ) ( )

( ) ( )1 1

T T

TT T

x k y k y k na

u k u k nb

�= −��

�Δ − Δ − + ��

�

�

The above model corresponds to the following 
general state space model form: 

[ ] [ ]1/ / ( )k k k kx A x B u k+ = + Δ   (15) 
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[ ] [ ]/ /k k k ky C x=        0 0nyC I� �= � ��

In the objective function defined in (7), the state error 
takes the following form 

( ) ( )

( )

( )
( )

( )

1

1

sp

sp
e sp

y y k

y y k nax x k x k
u k

u k nb

� �−
� �
� �
� �− −� �= − =
� �−Δ −
� �
� �
� �−Δ − +� �� �

�

�

Consider now the Lyapunov inequality presented in 
(10). In the realigned model case, matrix N becomes 
an identity matrix and (10) assumes the form: 

( ) ( )1 1 0
T

MPC MPCA BK P A BK P− −+ + − <� �

with 0TP P= >
or

( )
( )

0
MPC

TT
MPC

P A BK P

P A BK P

� �+
� � >� �+� �� �

�

�
 (16) 

Inequality (16) is still not a LMI as both MPCK�  and P
are variables of the MPC optimization problem. 
However, in this case we can define a new variable 

MPCY K P= �  and (16) is transformed into the 
following LMI:  

0T T T T

P AP BY

P A Y B P

+� �
>� �

+� �� �
Observe that, as P is not singular, if Y and P are both 
known then MPCK�  can be computed by 

1
MPCK Y P−=� .

With these new variables, Problem P1 can be re-
written as follows 

Problem P3

, , ,
min
MPCK P Yγ

γ

subject to  

( ) ( )

( ) ( )
( ) ( )

1
0

0 0

0 0 0

0 0

( ) ( ) 0
( )

T e
MPC

e T T e
MPC

Te T e T T T e
MPC MPC

Te T e

B QB R K x k

x k A QBK x k

x k K x k K B QAx k

x k A QA x k

−� �+� �
� �

� �γ + +� � >� �� �
� �+ −� �
� �� �
� �−� �� �� �

0T T T T

P AP BY

P A Y B P

+� �
>� �

+� �� �
where 

1
MPCK Y P−=� , MPC K MPCK C K=�  (17) 

Problem P3 is not linear because of Eq. (17) and 
consequently, we cannot use the existing LMI 
packages to solve this problem. Thus, we propose a 

sub optimal solution that is based on the solution to 
two LMI sub problems: 

Problem P3a

, ,
max

P Yα
α

subject to 

0T T T T

P AP BY

P A Y B P

+� �
>� �

+ − α� �� �
0α ≥

Let us call the solution to this problem as *α , *Q  and 
*Y , and we can obtain the gain of the MPC controller 

as * * * 1( )MPCK Y P −=� .

Problem P3b

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

0 0

0 0

0 0 0 0

min
MPC

Te T T e
k MPC MPCK

Te T T e
MPC

T Te T e e T e
MPC

J x k K B QB R K x k

x k K B QAx k

x k A QBK x k x k A QAx k

= + −

− −

− +

subject to  

( ) ( )* 1 * 1( ) ( ) 0T
K MPC K MPCA BC K P A BC K P− −+ + − <

      (18) 

that can be transformed into the following LMI: 

* *

* * * 1 *

* * * 1 *

* * 1 *

( ) ( )
0

( ) ( ) ( )

( ) ( )

MPC
T T

T T T T T T
MPC MPC

T T
MPC

P BK P

P P A P AP

P K B P K B P AP

P A P BK P

−

−

−

� �
� �

� �� �+ +
� � >� �
+ +� �� �
� �� �
+� �� �� �� �

�

� �

�

Problem P3a searches for a MPCK�  that maximizes α,
which represents the distance the closed loop is from 
the stability limit. The purpose of Problem P3b is to 
improve the performance of the controller obtained in 
Problem P3a by minimizing the true objective 
function of the MPC while preserving stability, which 
is guaranteed by the presence of Inequality (18). It is 
easy to show that if Problem P3a is feasible then 
Problem P3b is also feasible as 

* 0 0
TT

MPC MPCK K� �= � �� �
� �

is a feasible solution to Problem P3b. 

Assuming the same class of model uncertainty as the 
one defined in (13), Problems P3a and P3b can be 
extended to produce a new unconstrained robust 
MPC with output feedback, which is obtained from 
the solution of the following problems: 

Problem P4a

, ,
max

P Yα
α

subject to 
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0i i
T T T T

i i

P A P B Y

P A Y B P

+� �
>� �

+ − α� �� �
, 1, ,i L= �

0α >

Problem P4b 
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

0 0

0 0 0 0

0 0

min
MPC

Te T T e
k MPC MPCK

T Te T T e e T e
MPC MPC

Te T e

J x k K B QB R K x k

x k K B QAx k x k A QBK x k

x k A QAx k

= + −

− −

+

subject to  
* *

* * * 1 *

* * * 1 *

* * 1 *

( ) ( )
0

( ) ( ) ( )

( ) ( )

i MPC
T T

i i
T T T T T T

MPC i MPC i i
T T

i i MPC

P B K P

P P A P A P

P K B P K B P A P

P A P B K P

−

−

−

� �
� �

� �� �+ +
� �� � >
� �+ +� �
� �� �
+� �� �� �� �

�

� �

�

1, ,i L= �
Now, to obtain a new robust MPC with output 
feedback and input constraints, we propose the 
following algorithm: 

Algorithm 

Off-line step

Compute the output feedback gain MPCK  solving 
problems P4a and P4b considering the nc possible 
control configurations including the cases where one 
or more inputs become saturated. Each of these 
control configurations has a specific set of controlled 
outputs and unconstrained manipulated inputs. All the 
subsystems are assumed controllable. To stabilize all 
these subsystems that may result when one or more 
inputs become saturated, the following inequalities 
should be included in Problem P4a: 

( )
( )

0

j
i i MPC

TjT
i i MPC

P P A B K

P A B K P

� �+
� � >� �

+� �� �

�

�

1, ,i L= � , 1, ,j nc= �

where matrix j
MPCK�  is obtained from MPCK�  by 

zeroing the terms related to the saturated inputs  

On-line step

At each sampling step k, with the real output 
measurement compute the error on the state of the 
predicting model |[ ]e

k kx  and solve the following 
problem: 

Problem P5 

0 1, ,...,
min

nc
kJ

β β β

Subject to 

| |( [ ] ) ( [ ] )e T e T
k k k k kJ A x B u Q A x B u u R u= − Δ − Δ + Δ Δ

0
1

nc

j
j=

β =�

0 1 0,1...,j j nc≤ β ≤ =
1

0 1 |[ ]nc e
MPC MPC nc MPC k ku K K K x� �Δ = β + β + β� ��

min max( ) 1,..., 1u u k j u j m≤ + ≤ = −

The successive application of the control law 
provided by the solution to Problem P5, for the 
uncertain system defined in Eq. (13), produces an 
asymptotically stable closed-loop system as shown in 
Theorem 3 below. The proof of this theorem can be 
obtained by following the same steps as in Rodrigues 
and Odloak (2005). 

Theorem 3: Consider an uncertain system as defined 
in Eq. (13) and assume that this system remains 
controllable when one or more manipulated inputs 
become saturated. The closed loop system with the 
control strategy obtained by solving Problem P5 will 
remain stable when the system is moved from a point 
where none of the inputs is saturated to another point 
where one or more inputs become saturated. Stability 
is preserved in the reverse direction, when an input 
becomes available to be manipulated by the MPC. 

4. EXAMPLE 
The proposed control strategy was tested with a 
system of the process industry. The system is part of a 
distillation column where isobutene is separated from 
n-butane in an oil refinery. The controlled outputs are 
the level of liquid in the overhead drum (y1) and the 
contents of isobutene in the distillate (y2). The 
manipulated variables are the reboiler heat duty (u1)
and the distillate flow rate (u2). From practical tests 
the following two models were obtained for different 
operating conditions: 

1 27 5

2.3 0.7 3 0.5

G ( ) ,G ( )
7 1.8 5 2.5

20 1 4 1 15 1 10 1

s s
s s s ss s
e e
s s s s

− −

− −� � � �
� � � �
� � � �= =
� � � �− − − −
� � � �+ + + +� � � �

In the simulation performed here, we study the set-
point tracking problem where the desired value of 
isobutene in the distillate is increased by 1% and the 
desired value of the liquid level is not modified. The 
tuning parameters that were used in the off-line stage 
of the controller synthesis are the following: T = 1; m
= 3; p = 50; Q = diag[1 1]; R = diag[0.1 0.1]. Related 
to the values the variables at the initial steady state of 
the system, the input limits are max [0.2 2]u = ,

min [ 0.2 2]u = − − . The nominal model is represented 
by model 1 and the true plant can be either model 1 
or model 2. Figure 1 shows the system responses for 
the nominally stable controller defined by problems 
3a and 3b for three different cases. The first case 
corresponds to the ideal case where the predicting 
model and the true plant are represented by model 1. 
In Case 2, we have the same system as in Case 1 but 
the minimum bound for input u1 was modified to –0.1 
in order to force this input to become active during 
part of the simulation time.  
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From Fig. 1, we see that the controller stabilizes the 
true model without any problem and the performance 
of the controller is acceptable. However, in Case 3 
where the controller is based in model 1 and the true 
plant is represented by model 2, the closed loop 
system becomes unstable. 

Figure 1. MPC with nominal model: Case 1 (….),
Case 2 (- - - -) and Case 3 (⎯⎯)

Fig.2 shows the closed loop responses with the robust 
MPC defined by Problems 4a and 4b considering 
models 1 and 2. In the two simulated cases plant is 
represented by model 2. In Case 4, the inputs do not 
saturate and the controller drives the two outputs to 
their desired values. The performance of the 
controller is slightly worse than in the ideal case as 
the output responses are slower than the responses for 
the nominal case. In Case 5, the minimum bound of 
input u2 was modified to –0.2 in order to force this 
constraint to become active. We see from Fig. 2, that 
offset appears in both outputs because after 
saturation, the controller has only one manipulated 
input and two controlled outputs.  

5. CONCLUSION 
In this paper, it was developed a new version of the 
constrained robust MPC with output feedback. In the 
proposed method, assuming that controllability is 
preserved, stability is assured even when the system 
inputs become saturated at transient or equilibrium 
states. Polytopic model uncertainty is considered. 
Computer burden of the numerical methods involved 
in the practical synthesis of the controller is 
substantially reduced through the adoption of a 

simplified sub optimal solution to the control 
problem. On-line computation involves the search for 
the coefficients of a linear combination of previously 
defined MPC controllers. A simulation example 
shows that the implementation of the developed 
approach to real industrial systems may be achieved 
at least for systems of small to medium dimension. 

Fig.2. Robust MPC: Case 4 (⎯⎯), Case 5 (- - - -) 
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