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1. INTRODUCTION 

MPC is a widely accepted control algorithm in the 

chemical industry. In most of industrial applications 

the design of the controller is based on a nominal 

linear model of the process. Such control systems that 

provide optimal performance for a particular linear 

model may perform poorly when implemented on a 

physical nonlinear system (Zheng and Morari, 1993). 

Due to the process nonlinearity, a system behaves 

differently at different operating conditions. 

Therefore, controllers that are based on one single 

linear model have to be tuned for robustness to model 

errors or uncertainty between the nominal model and 

the actual process behavior. 

The basic philosophy in the literature for optimizing 

the performance of MPC-based design algorithms that 

explicitly account for model-plant error is to modify 

the on-line minimization problem to a min-max 

problem, where the worst-case value of the objective 

function is minimized over the set of plants that 

account for the nominal model and uncertainty 

(Campo and Morari, 1987; Zheng and Morari, 1993). 

This approach is clearly computationally much more 

demanding than solving it for a nominal plant. To 

simplify the computational complexity, one must 

choose simplistic, albeit unrealistic, model 

uncertainty descriptions, e.g., fewer impulse response 

coefficients. Also, controllers that are tuned for 

robustness to model errors between a nominal linear 

model and the actual nonlinear process output tend to 

have been proposed lately to address the nonlinearity 

of the process and to improve the closed loop 

performance (Allgower, et al., 2000). However, it is 

difficult to guarantee stability and performance for 

these controllers and they generally require a 

nonlinear mechanistic model of the process that is 

often difficult to obtain. 

In this work, an alternative gain-scheduled MPC 

design approach is proposed, which allows explicit 

consideration of the nonlinear behavior of the 

process. To design this controller, instead of using 

one step response model for output prediction, several 

linear step models will be identified for different 

regions defined based on the values of the 

manipulated variable u. Then, for each of these 

models, a linear MPC calculation can be conducted 

based on the current value of u. Thus, the controller is 

referred to as a gain-scheduled MPC because the 
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MPC matrix gain changes as a function of the value 

of the manipulated variable u.

It is assumed in this work that a mechanistic model of 

the process is not available. Thus, for the purpose of 

controller design and robustness analysis, an 

empirical nonlinear state-affine model (Knapp and 

Budman, 2001) to be identified from experiments is 

used as follows: 
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For a process given by the state-affine model , it is 

valid to assume that in a small neighborhood of a pre-

selected nominal operating point, i.e. for 1)(tu ,

the process can be accurately modeled by the linear 

part of the state-affine model. The uncertainty of the 

system will be assumed to be the difference between 

the nonlinear model and the nominal linear model. It 

is also assumed that all of the uncertainty in the state-

affine model is due to the time-varying nonlinearity 

of the state-affine model around this operating point. 

It is therefore possible to describe the model 

uncertainty perturbation  in the following form: t,i

i
ti tu )(,  (2) 

Some of the advantages of this model for the purpose 

of analysis are: 1)-it can be easily identified from 

data, 2)- by considering the high order of u to be the 

uncertainty elements, it is easy to split the model 

above into a linear part and a nonlinear part and to 

formulate analysis tests for robust stability and 

performance (Budman and Knapp, 2001) and, 3)- the 

uncertainty elements can be easily bounded based on 

the limits of the manipulated variable u. Also, step 

models for designing the gain scheduled controller 

mentioned above can be easily extracted from the 

model given by (1). 

The closed-loop system composed of the state-affine 

model combined with a state-space formulation of the 

gain-scheduled MPC controller is studied for robust 

stability and performance through LMI’s tests. Thus, 

the proposed gain-scheduled MPC controller is 

designed to ensure closed-loop system robust stability 

and suitable performance. 

This paper is organized as follows. Section 2 

develops the state-space formulation of the 

unconstrained MPC control law. The closed-loop 

system equations, composed of the state-affine model 

and the MPC controller, are formulated as an affine 

parameter-dependent system. In Section 3, the 

procedures for the design and optimization of the 

robust gain-scheduled MPC are detailed. In Section 4, 

the above proposed approach is applied to a 2x2 

system, leading to results and conclusions 

summarized in Section 5. 

2. UNCONSTRAINED MPC ALGORITHM IN 

STATE-SPACE FORM 

In order to formulate robust stability and robust 

performance tests, a state-space formulation of the 

MPC controller (Zanovello and Budman, 1999) is 

desired. A standard unconstrained MPC formulation 

is used. Consider a multiple-input-multiple-output 

(MIMO) system with nu inputs and ny outputs, to be 

controlled by a MPC controller, with prediction 

horizon p and control horizon m.

The model update vector is defined as follows: 
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The step response coefficient  and impulse 

response coefficient  are defined as follows: 
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where  and  are the  response 

coefficient describing the effect of  input on 

output. The step response vector  and the step 

response matrix  are given as follows: 
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where m is referred to as the control horizon. The p-

step-ahead prediction vector )/1( ttY  is defined as 

follows:
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u
pS  is the sub-matrix of the first p rows of  and p

is the prediction horizon. The vector 

u
S

)/1( ttW  is 

defined to represent the unmeasured disturbance and 

model/plant mismatch. Making the common 

assumption that the disturbances are step-like, the 

disturbance vector  is given as follows: )/1( ttW
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where )(ty  is the vector of the  measured values, 

and

yn

)(ty  is the vector composed of the first 

elements of the vector 

yn

)(tY .

The objective function is given as follows: 
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where  are positive-definite weighting matrices 

for the manipulated and controlled variables 

respectively. Then, the least squares solution of the 

minimization problem with the cost function given by 

(8) is given as follows: 
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)|1( tt  is the feedback error vector defined as 

follows:

)|1()()1()|1( tttttt p WYMR  (10) 

The controller state vector  is defined as 

follows:

)1(tU

unn
T nttt 1)()1()1( uuU  (11) 

Assuming  without loss of generality, the 

following is obtained from (11), (9) and (10): 
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The controller output  is defined as follows: )t(u
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Using the relation ,

the model update vector 
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The predicted output is given as follows: 
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To analyze the robustness of the closed loop system 

the state affine model given in equation 1 is used to 

model the process. This model (Knapp and Budman, 
2001; Gao and Budman, 2005) has been shown to 

correctly describe the nonlinear behavior of the 

process.  

From (14), (7) and (15), equation (12) can be 

rewritten as: 

)(

))()(0(21)1(2)(

22122 HeNHMKTTE

fWxHNKTUEU
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 (16) 

The control action can be calculated from the 
following expression: 
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 (17) 

Then, a state-space representation of the MPC 
controller can be obtained by combining (16) and (17) 

as follows: 
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From (1) and (18), the closed-loop system is obtained 

by combining the state-affine model and the MPC 

controller equations into the following equation:  
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The above state-space system representation is used 

for robust stability and performance analysis as 

described in the next section. 

3. ROBUST GAIN-SCHEDULED MPC DESIGN 

For open-loop stable plants, the stability and 

performance of the closed-loop system depends on 

the MPC design parameters, m, p,  and , and step 

response coefficients. In this work, for simplicity, 

is the only parameter considered for tuning whereas 
the other parameters are assumed constant. 

For the design of a gain-scheduled MPC controller for 

a MIMO system with  inputs, the overall range of 

change of each input variable  is 

discretized into  regions. The impulse 

model  is identified in each of these sub-ranges 

from equation (1). An optimal value of the input 

weight matrix  is selected for each one of these 

sub-ranges resulting in a gain-scheduled MPC 
algorithm. 

un
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The closed-loop system given by (19) has affine-
parameter dependence with respect to the uncertain 

parameters , and this allows the formulation of 

the robust stability and performance conditions 
developed by Gao and Budman (2005) to the design 

of MPC controllers given by (18). The robust stability 

condition (Gao and Budman, 2005) is: 

s't,i

allforT 0)()( PPAA  (20) 

where  denotes the vertices or corners of the 

parameter box. For robust performance analysis, the 

system performance index is defined from the ratio 

between the error to disturbances: 
22

ve .

The objective of the controller optimization problem 

is to minimize the parameter  according to a GEVP 

(Generalized Eigenvalue Problem) that can be 
formulated and solved using MATLAB as follows: 
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4. DESIGN CASE STUDY 

To illustrate the design technique, a simple 2-input-2-

output example is used. The state-affine model has 

the form of  with )(),( 2,21,1 tutu tt , and the 

model coefficient matrices are as follows: 
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Assuming even discretization of each one of the 

manipulated variables u into two regions, the 

following controller, referred to as GSMPC, is 
proposed for a total of four operating regions: 
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th MPC

controller, where u1 evolves within the ith region, and 

u2 evolves within the jth  region. Each  is of the 

following form: 
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KMPCij is calculated based on the step response 
conducted between the extreme values of u of each of 

the regions defined in (23) in terms of u. For example, 
KMPC12 will be calculated using a step response 

corresponding to  

3.00,03.0 21 uu .

For comparison, a linear MPC controller, referred to 

as LMPC in the sequel, will be designed with the 
following form: 

)),(,(
3.03.0

3.03.0
2211

2

1
K MPCMPC

u

u
for  (25) 

where, 11 and 22 are the weights of the manipulated 

variables u1 and u2 respectively. For this linear 

controller, KMPC is calculated based on step responses 
carried out between the limits -1 to 1 for each u.
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Fig. 1. Disturbance signal for the simulation 

0 50 100 150 200
-0.02

-0.01

0

0.01

0.02
y1.linear(-),G -S (:)

0 50 100 150 200
-0.01

-0.005

0

0.005

0.01
y 2.linear(-),G -S (:)

0 50 100 150 200
-0.2

-0.1

0

0.1

0.2
 u1. linear(-),G -S (:)

0 50 100 150 200
-0.4

-0.2

0

0.2

0.4
u2.linear(-),G -S (:)

Fig. 2. Comparison of the LMPC (solid line) and 

GSMPC (dotted line) controllers designed based 

on the minimization of local .

The input weights of the GSMPC and LMPC 

controllers are optimized to minimize the 

performance index  calculated according to the 

GEVP problem given by (21). The calculation 

includes 16 LMI’s according to all the vertices 

defined by (23) and the resulting optimal will be 

referred to as global .
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Fig. 3. Disturbance signal for the simulation 
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Fig. 4 Comparison of the LMPC (solid line) and 

GSMPC (dotted line) controllers designed based 

on the minimization of global .

The robust performance analysis and simulation 
results of the gain scheduled and linear MPC 

controllers for the MIMO process are summarized in 

Table 1. It can be seen from Table 1 that the 

performance index global  for GSMPC controllers is 

0.8494, larger than the value of 0.7472 for global

obtained for LMPC. This seems to indicate that a 
better performance can be achieved with LMPC. This 

result is not completely surprising since the gain 

scheduling controller is not necessarily better when 
large changes in u values occurred during dynamic 

transitions between the different regions defined in 
(23). One way to improve the GSMPC is by 

optimizing further the step response models used to 

calculate the controllers. However, this is a difficult 
optimization problem and it is beyond the scope of 

this study. 

On the other hand, a scenario where GSMPC is 

expected to perform better than the LMPC is when 

the process is operated within each of the regions 
described by (23) for long periods of time. This is due 

to the fact that the GSMPC is based on “local” step 

response models identified in each of these regions. 
This scenario can be assessed by computing a value 

of  for each of the regions given in (23) by using the 

corresponding set of 4 LMI’s for each one of the 
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combinations of u values in each of these 4 regions. 
An overall performance index, to be referred as 

local , can be obtained by calculating the average of 

the four resulting ’s. Then, LMPC and GSMPC 

controllers that minimize local  can be designed. The 

results, shown in Table 1, confirm that the GSMPC is 

better than the LMPC when the controllers are 

designed based on this local  index, instead of the 

global performance index global calculated for the 

whole range of operation.  

Table 1 MPC controller optimization

based on global LMPC GSMPC

],,,[ 22211211 [0.5009,-

,-,0.4983] 

[0.5164,0.5029, 

0.4980,0.5034] 

global  at 

optimum 

0.7472 0.8694 

simulation 0.3396 0.3238 

based on local LMPC GSMPC

],,,[ 22211211 [0.1054,-
,-,0.0958] 

[0.0988,0.1006,  
0.1044, 0.1006] 

local  at optimum 0.4765 0.4021 

simulation 0.2524 0.2490 

To assess the correctness of the analysis, a large 
number of disturbances were simulated for the 

controllers described above. Ideally, the disturbances 

that lead to the worst  values are sought. However, 

this is a very difficult optimization problem and 

therefore the  values calculated from simulations 

and shown in Table 1 as simulation , are the largest 

found during the simulations but not necessarily the 

largest possible. The worst disturbances found in the 
simulations are given in Fig. 1 and Fig.3, for the 

controllers based on local  and global  respectively.

Both GSMPC, based on global  and local , showed 

improvement in terms of simulation  compared to the 

LMPC. Fig. 2 and Fig.4 show the results for the 

simulations carried out to compute simulation  for 

controllers that are designed based on the 

minimization of local  and global  respectively. It 

should be noticed in Fig.2 that corresponds to the 

design based on local  that during 0<t<100 the u’s 

are evolving within region I described in (23) and 

during 100<t<200 the u’s are within region IV in 

(23). The analytical global and local  are clearly 

larger than the simulation  indicating that the 

analytical bounds may be conservative but they can 

still be useful as an indicator of the relative 

performance of the controllers described above. 

5. CONCLUSIONS 

An approach is proposed to design gain-scheduled 
MPC controllers for nonlinear processes using 

process data. It is based on empirical state-affine 

models of the process. Gain-scheduled MPC 
controllers are obtained using a GEVP based 

optimization algorithm. The analysis show that the 

gain scheduled MPC performs better than the linear 
MPC when the local performance in small regions of 

operation is considered.  
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