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Abstract: In this paper we address the task of finding a robust process and
control design for nonlinear systems with uncertainties and disturbances such
that bounds on inputs and outputs are not violated. The solution of this task is
approached by Constructive Nonlinear Dynamics (CNLD), an optimization based
method developed by the authors in recent years. CNLD guarantees robustness by
backing off a nominal point of operation from critical manifolds. Critical manifolds
are boundaries in the space of system and controller parameters that separate
regions with qualitatively different system behavior, such as a region with stable
operating points from a region with unstable system behavior. In this work, CNLD
is adopted and extended to account for bounds and constraints on trajectories of
inputs and states. Critical boundaries in the parameter space are presented that
separate a region where all trajectories stay within the bounds from a region where
trajectories violate the constraints. Constraints ensuring a minimal back off from
this new type of critical manifold are derived. Application to an illustrative case
study demonstrates the feasibility of the approach. Copyright c© 2006 IFAC
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1. INTRODUCTION

In most process systems, bounds on inputs and
states must not be violated for safety reasons or
because of product specifications even in the pres-
ence of process uncertainties and disturbances.
A large number of articles addresses the task
of process and control design to guarantee that
constraints on inputs and outputs hold in the
presence of disturbances. Nonlinear model pre-
dictive control is widely used for systems with
constraints, including robust control with min-
max formulations in the presence of uncertainties,
see e. g. the survey paper (Mayne et al., 2000).
Other approaches that address constrained ro-
bust nonlinear control include Lyapunov based
techniques (El-Farra and Christofides, 2001) or
the combination of feedback linearizing control

and linear model predictive control (Kurtz and
Henson, 1997).
In this work, we address the integration of ro-
bust process and control design from a different
perspective with optimization based Constructive
Nonlinear Dynamics (CNLD). CNLD has origi-
nally been developed by the authors for the robust
design of nonlinear process systems for which sta-
bility and feasibility in the presence of paramet-
ric uncertainty must be guaranteed (Mönnigmann
and Marquardt, 2002). With some extensions,
however, this method has also successfully been
applied to the robust design of closed-loop sys-
tems (Mönnigmann and Marquardt, 2005). The
method is based on imposing additional con-
straints on the system to guarantee a specified
distance from critical boundaries in the space of
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uncertain parameters. These boundaries separate
those designs in the parameter space that exhibit
desired properties from those which do not sat-
isfy the desired properties. The general concept
of critical boundaries allows to consider robust
stability, feasibility, as well as robust performance
of closed loop systems. One drawback of this
versatile method so far, however, is the limita-
tion to steady states and quasi-statically varying
parameters (Mönnigmann and Marquardt, 2005).
This is quite a severe restriction in a closed-loop
control context as disturbances are generally fast
compared to the system dynamics. In this paper
an extension of CNLD is discussed to incorporate
fast disturbances.

2. CRITICAL MANIFOLDS

Assume that a process model can be written as
a system of nonlinear ordinary differential equa-
tions,

ẋ = f(x, p, d(α, t)), x(t0) = x0, (1)

with states x ∈ R
nx , initial conditions x0 ∈ R

nx ,
constant process parameters p ∈ R

np , which are
known or can be set to a specified value, and time-
varying disturbances d ∈ R

nd parameterized by a
set of uncertain parameters α ∈ R

nα . The right
hand side, f , maps from R

1+nx+np+nα → R
nx .

In the framework of CNLD, the structure of the
disturbances has to be known except for the exact
values of the uncertain parameters α. We assume
that all α vary around a nominal value α(0) by the
uncertainty ∆α according to

α ∈ [α(0) − ∆α, α(0) + ∆α]. (2)

A simple example of a disturbance d(α, t) is a step
disturbance triggered at t0,

d(α, t) =
{

0, t ≤ t0
α, t > t0

, (3)

with α parameterizing the height of the distur-
bance. In the following we will replace distur-
bances d(α, t) by their parameterization t and α.
The system class (1) includes open-loop systems
as well as closed-loop systems with specified con-
trol structure. In the latter case, system and con-
trol parameters are concatenated together in the
parameter vector p. The flow of the nonlinear
system (1) is given by

x = χ(x0, p, α, t),
χ(x0, p, α, t0) = x0.

(4)

For nonlinear systems, the flow χ is generally
not available in an analytical form but has to be
evaluated by numerical integration. Let

0 < h(x, p, α, t), h ∈ R, t ∈ [t0, te] (5)

denote some time-varying bound on the trajec-
tories of the process model which must not be
violated at any time t < te. In the simplest case

h = x1b − x1 represents a constant upper bound
for one of the state variables. Then the bound h is
a straight line in the (x1, t)-plane, which unfolds
into a hyperplane in the space (x, α, t) of states,
parameters, and time as shown in Fig. 1 (left).
Given the constraint (5), we can define two dif-
ferent kinds of critical manifolds. The first one is
characterized by the set of trajectories which tan-
gentially touch the hypersurface spanned by (5).
The second one is defined by the set of trajectories
where the constraint exactly holds at a specified
final time te. The first type of points is closely
related to the phenomena of grazing bifurcation
of hybrid systems (Nordmark, 1991) where hitting
the boundary h triggers a discrete event, e. g. the
impact of a periodically forced oscillator on a solid
wall. The grazing point corresponds to the trajec-
tory where the system hits the boundary with zero
velocity. Donde and Hiskens (2004) use manifolds
of grazing bifurcations to calculate the closest
grazing bifurcation from a nominal trajectory of a
hybrid system. In this paper, however, boundaries
(5) do not trigger a discrete event but are specified
for safety reasons or product specifications.

2.1 Critical manifold of grazing points

Consider a realization x∗ of the flow χ(x0, p, α, t)
at t∗ satisfying the constraint (5):

x∗ − χ(x0, p, α, t∗) = 0,

h(x∗, p, α, t∗) = 0.
(6)

Eq. (6) defines the time t∗ and states x∗ at
which the trajectory corresponding to x0, p, and
α crosses the constraint (5). Assume that the
system is subject to a step disturbance at t0 with
magnitude α1. As can be inferred from Fig. 1 (left)
a curve of points satisfying (6) unfolds in the
(t, α1)-plane by continuously varying α1.

x 1

h = x1b–x1

tg αg
1

α
1

t

t

α2

α1

Fig. 1. Left: trajectories for different values of
α1 and curve (thick line) connecting points
where trajectories cross the constraint h =
0. The grazing point is marked by ×.
Right: manifold of grazing points. Trajectory
sketches show on which side specified bound-
ary h = 0 is not crossed.

The point (tg, αg
1) in Fig. 1 (left) marks the graz-

ing point at which a trajectory touches tangen-
tially the surface of the constraint. The tangent
space of the hypersurface defined by constraint
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(5) in the space (x, t), is spanned by the vector
[vT , ṽ]T with v ∈ R

nx and ṽ ∈ R satisfying[
hT

x , ht

] [
v
ṽ

]
= 0,

vT v + ṽ2 �= 0.

(7)

hx and ht are the partial derivatives of the con-
straint h with respect to the state variables and
time, respectively. At (xg, tg) the tangent space
of the trajectory spanned by [χ̇(x0, p, α, t)T , 1]T

must satisfy (7). The deriviative of the flow with
respect to time χ̇ is the right hand side f of
the nonlinear system (1). The augmented system
M (g) for a grazing point can therefore be written
as

M (g) =
(

h(x, p, α, t)
hxf(x, p, α, t) + ht

)
= 0, (8)

with the flow x = χ as defined in (4). These
two equations determine the time tg, and one
parameter αg

1 at which the grazing point occurs.
Assume that there is a second disturbance at
t0 with magnitude α2. The grazing point then
unfolds to a curve (and the curve of crossing
points into a two dimensional surface) in the
three dimensional space (t, α1, α2) as shown in
Fig. 1 (right). The curve of grazing points di-
vides the parameter space into system designs
with qualitative different behavior with respect to
the constraint (5). In Fig. 1 (right) trajectories
located on one side of this curve will not cross the
constraint h = 0 for all times t, while transients of
the system located on the other side of the critical
manifold will always cross the boundary at some
point after the step disturbances.
Note, that more than one critical manifold may
exist for a constraint (5) in general if the tra-
jectory touches or crosses the boundary several
times. The region in the parameter space where
the constraint is not violated is then the intersec-
tion of the regions devised by all critical mani-
folds.

2.2 Critical manifolds of endpoints

A second type of critical manifold can be defined
for a bound on a trajectory by specifying a final
time te at which the constraint must be exactly
fulfilled as shown in Fig. 2 (left). Responses of
system (1) after a step disturbance, parameterized
by α1 are shown together with the curve where the
constraint h is crossed.
The trajectory with disturbance parameter α1 =
αe

1 crosses the boundary at the specified time
te. The augmented system defining the endpoint
condition is given by

M (e) =
(

h(x, p, α, t)
t − te

)
= 0. (9)

These two equations determine the time te, and
one parameter αe

1.

t
α1

x 1

h = x1b–x1

teα1
e

α2

α1

t

t = te

h = x1b–x1

te

Fig. 2. Left: trajectories for different values of dis-
turbance parameter α1 and curve (thick line)
connecting points where trajectories cross the
boundary h = 0. Critical point at te, αe

1 is
marked by ×. Right: manifold of trajectories
which fulfill constraint h = 0 at te after
step disturbances of magnitude α1 and α2.
Sketches of trajectories show in which region
h = 0 is crossed or not.

By taking into account a second disturbance pa-
rameterized by α2, the critical crossing point un-
folds into a curve in the space (t, α1, α2) as shown
in Fig. 2 (right). This curve separates a region in
the parameter space (α1, α2) where the boundary
is not touched or crossed until the specified time
te is reached from a region where the constraint
is always violated for t < te. This type of criti-
cal manifold is particularly useful for bounds on
strictly monotonously increasing states or outputs
where grazing points cannot occur.

3. NORMAL VECTORS ON CRITICAL
MANIFOLDS

The basic idea of CNLD (Mönnigmann and Mar-
quardt, 2002) is to utilize critical manifolds as
defined in the previous section for the robust
design of nonlinear systems. The approach en-
forces a lower bound on the parametric distance
between a nominal operating point α(0) and the
nearest point α(c) on the critical boundary. This
lower bound ensures that the complete range of
uncertain parameters is at a safe distance from
the critical boundary as will be shown below.

The scaling of the parameters αi → αi/∆αi, α
(0)
i →

α
(0)
i /∆αi gives the dimensionless parameters

αi ∈
[
α

(0)
i − 1, α

(0)
i + 1

]
. (10)

In this case the minimal distance is equal to the
radius

√
nα of the nα-dimensional ball enclosing

the nα-dimensional cube of sidelength 2 defined by
(10). In Fig. 3, a robust operating point is shown
for nα = 2. The shortest distance between α(0)

and α(c) occurs along the direction of the normal
vector r to the critical manifold (Dobson, 1993).
The minimal back off constraints can be stated as

α(0) = α(c) + l
r

‖r‖ ,

l ≥ √
nα.

(11)

The normal vector of critical manifolds can be
calculated from the defining augmented systems
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Fig. 3. Robust operating point α(0) with critical
manifold (thick line) and normal vector di-
rection r (dashed thick line).

(8) and (9) following the scheme of derivation de-
veloped by Mönnigmann and Marquardt (2002).
As parameters p and initial conditions x0 are
known, and because the states x are defined by
the flow (4), the remaining variables are time t
and uncertain parameters α. The normal space of
the hypersurface defined by an augmented system
M (c), c ∈ {g, e} in the (t, α)-space is spanned
by the Jacobian matrix of the partial derivatives
∇M (c). The normal space of the augmented sys-
tems (8) and (9) is a (nα + 1) × (nα + 1) matrix

B =

[
∇tM

(c)
1 ∇tM

(c)
2

∇αM
(c)
1 ∇αM

(c)
2

]
, c ∈ {g, e}. (12)

For the augemented system of the grazing point
(8), the entries of B are defined by

∇tM
(g)
1 = hxf + ht,

∇tM
(g)
2 = hxxff + hxfxf + hxft + 2hxtf + htt,

∇αM
(g)
1 = hxχα + hα,

∇αM
(g)
2 = hxxfχα + hxαf + hxfα + hxfxχα+

htxχα + htα.

The entries of B for the endpoint system (9) are

∇tM
(e)
1 = hxf + ht,

∇tM
(e)
2 = 1,

∇αM
(e)
1 = hxχα + hα,

∇αM
(e)
2 = 0.

Note that the gradients include sensitivities χα of
the flow with respect to the uncertain parameters
α. Sensitivity equations are obtained by differen-
tiating the dynamic system (1) with respect to α

χ̇α = fxχα + fα.

A number of numerical integrators supports effi-
cient evaluation of the sensitivity equations (e. g.
Schlegel et al. (2004)).
The minimal distance in the space of the uncer-
tain parameters α is in the direction of a vector
r ∈ R

nα in the normal space (12) which has
no contribution along the variable t. This vector
is obtained by choosing an appropriate vector
κ ∈ R

2 such that

Bκ =
[

0
r

]
∈ R

nα+1. (13)

Together with the condition κT z − 1 = 0 with
z ∈ R

2 not normal to κ the two entries of κ are
defined by the equations[

∇tM
(c)
1 ∇tM

(c)
2

]
κ = 0,

κT z − 1 = 0.
, c ∈ g, e (14)

For the grazing point, i. e. c = g, this system
of equations is solved by choosing κ = [1, 0]T

and z = κ. The trailing nα elements of (13)
then give the nα equations defining the normal
vector r. The normal vector r can be calculated
by combining the system of the normal vector
equations with the augmented system defining the
critical manifold (8) to result in

G(g) =

⎛
⎝ h(x, p, α, t)

hxf + ht

hxχα + hα − r

⎞
⎠ = 0. (15)

For the endpoint constraint the system of equa-
tions (14) is solved by choosing κ = [1,−(hxf +
ht)] and z = [1, 0]. The augmented system of
equations defining the normal vector direction for
the endpoint constraint (9) then reads

G(e) =

⎛
⎝ h(x, p, α, t)

t − te

hxχα + hα − r

⎞
⎠ = 0. (16)

The task of finding a system and control design
minimizing an objective φ and guaranteeing that
specified constraints (5) are never violated despite
disturbances is addressed by solving the following
constrained nonlinear program (NLP)

minφ(x(0), p(0), α(0), t(0)) (17a)

s. t. x(0) = χ(x(0)
0 , p(0), α(0), t(0)),

0 < h(i)(x(0), p(0), α(0), t(0)),
(17b)

x(i,j) = χ(x(0)
0 , p(0), α(i,j), t(i,j)),

0 = G(c,i,j)(p(0), α(i,j), t(i,j), r(i,j)),
(17c)

0 = α(i,j) − α(0) + l(i,j)
r(i,j)

‖r(i,j)‖ ,

0 ≤ l(i,j) −√
nα.

(17d)

Eqs. (17b) define the states x(0) and constraints
of the nominal system with upper index i = 1 . . . I
enumerating the constraints. Eqs. (17c) define
the states and augmented normal vector systems
of the critical points. The superscript c denotes
the type of critical manifold (grazing point or
endpoint) and the index j = 1 . . . Ji enumerates
the nearest critical manifolds for constraint i.
Eqs. (17d) enforce the minimal back off between
the nominal point and the critical manifold (i, j).
The degrees of freedom of the NLP (17) are p(0),
α(0), x

(0)
0 , t(i,j), α(i,j), r(i,j), and l(i,j).
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Note that the location of the critical manifolds
corresponding to endpoints and grazing points are
not known beforehand. Therefore the algorithm of
Mönnigmann and Marquardt (2005) has to be em-
ployed where critical manifolds are detected as the
optimization proceeds. If none of the determining
critical manifolds is known a priori, optimization
has to start without any robustness constraints
(17c)-(17d). Detection of unknown critical points
is implemented by numerical integration of sys-
tem (1). The detection of critical points must
therefore be realized on a finite time horizon with
the length of the time horizon being a degree of
freedom. Specification of the horizon length is a
compromise between computational costs on the
one hand and the risk of missing constraint vio-
lations after the time horizon on the other hand.
Minimal distance constraints for the new detected
manifolds are added to (17). By repeatedly solving
the optimization problem and monitoring for new
critical points, the set of known critical manifolds
can be built up iteratively. If no further criti-
cal manifolds are detected along the optimization
path, the robustness region has to be examined for
critical manifolds which were not crossed by the
nominal operating point during optimization, but
which nevertheless might exist inside the robust-
ness region. In this work this test is employed on
a grid of points of the uncertainty region, e. g., on
the corner or center points of the hypercube (2).
A rigorous search for critical points within the un-
certainty region can be implemented with interval
arithmetics (Mönnigmann and Marquardt, 2005).
Such a rigorous search is, however, computation-
ally expensive and therefore only feasible for prob-
lems with a few uncertain parameters. If the tests
reveal no further critical manifolds, an optimal
operating point that is robust with respect to the
specified parametric uncertainty is found and the
algorithm terminates.

4. ILLUSTRATIVE CASE STUDY

Consider a continuous fermenter model with three
nonlinear ODEs (c. f. Henson and Seborg (1992)
for details on the model):

Ẋ = −DX + µX,

Ṡ = D(Sf − S) − µ

YX/S
X,

Ṗ = −DP + (αµ + β)X.

(18)

Here X, S, and P denote the three states biomass,
substrate, and product concentration, µ is the
growth rate:

µ =
µm

(
1 − P

Pm

)
S

Km + S + S2

Ki

.

The dilution rate D is the manipulated variable
and the biomass concentration X the variable to
be controlled with a PI controller

D = D0 + Kc

(
Xsp − X +

1
τi

∫ t

0

(Xsp − X)dτ

)
,

with tuning parameters Kc and τi. The parameter
values of the model are summarized in Table 1.
According to Henson and Seborg (1992) the yield

Table 1. Parameter values

Parameter Value Parameter Value

Y
(0)

X/S
0.4 µ

(0)
m 0.48 1

h

α 2.2 β 0.2 1
h

Pm 50 g
L

Km 1.2 g
L

Ki 22 g
L

Sf 20 g
L

YX/S and the maximum specific growth rate µm

may exhibit significant uncertainty. We assume
therefore that both are subject to disturbances
for t > t0:

YX/S = Y
(0)
X/S + ỸX/S ,

ỸX/S =
{

0, t ≤ t0,
∆YX/S (1 − exp ((t − t0)/τ)) , t > t0,

µm = µ(0)
m + µ̃m,

µ̃m =
{

0, t ≤ t0,
∆µm sin(ω(t − t0)), t > t0.

The disturbance ỸX/S is parameterized by the
magnitude ∆YX/S ∈ [−0.05, 0.05] and the time
constant set to τ = 2h. The sinusoidal dis-
turbance µ̃m is parameterized by the amplitude
∆µm ∈ [−0.05, 0.05] and the frequency set to
ω = 1h−1.
We want to find an optimal operating point which
minimizes the economic objective φ = −(10P −
Sf )D for the undisturbed nominal case and a con-
troller design that guarantees that the following
constraints hold for all time even in the presence
of disturbances µ̃m and ỸX/S :

0 < h1 = PD − 3.0
[
g (Lh)−1

]
,

0 < h2 = 6.5
[
g L−1

] − S,

0 < h3 = 1.25
[
hg2L−2

]−∫ t

0

(Xsp − X)2dτ.

(19)

The first two constraints guarantee a minimal
reactor yield and an upper bound on the sub-
strate concentration in the product stream. The
upper bound on the integrated squared tracking
error (ISE) guarantees a minimal performance
of the closed loop. Constraints h1 and h2 are
implemented as minimal back off from critical
manifolds of grazing points. For the ISE criterion,
however, a grazing point cannot occur as the ISE
increases monotonically and complete supression
of the sinusoidal disturbance cannot be expected.
Therefore, a minimal distance constraint to an
endpoint condition (16) is established. The end
time is set to te = 200 h which is roughly 30
times the time constant of the open loop process.
The length of the time horizon for the detection
of critical points is chosen accordingly to 200 h.
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For the nominal operating point steady state con-
straints 0 = f (0) are employed replacing the flow
in (17b). For the nominal point the ISE constraint
h3 of (19) is therefore automatically fulfilled. The
initial values of the critical trajectories (i, j) are
set to the nominal steady states x

(i,j)
0 = x(0).

In this scenario the fermentor runs at its steady
state operating point x(0) with disturbances ỸX/S

and µ̃m starting at t0. The control design and
operating point obtained by solving the NLP (17)
guarantees that all possible trajectories resulting
from these disturbances starting from initial con-
ditions x

(i,j)
0 = x(0) do not cross the specified

constraints (19). Free optimization variables are
the tuning parameters Kc, τi, the nominal dilution
rate D0, the set point of the biomass concentra-
tion Xsp, the substrate feed concentration Sf and
the steady state variables of the nominal system
X(0), S(0), P (0).

−0.1 0 0.1
−0.1

0

0.1

∆ µ
m

∆ 
Y X

/S

h
1

h
2

Fig. 4. Robustness ellipse in the plane of the
uncertain disturbance parameters. Two con-
straints h1 (continuous line) and h2 (dashed
line) are active for the robustly optimal pro-
cess and control design.

Optimization starts without robustness constraints.
Unknown critical manifolds are detected by nu-
merical integration and repeated optimization
steps. Each detected critical manifold adds a nor-
mal vector constraint with four new variables
t(i,j), l(i,j), ∆µ

(i,j)
m , ∆Y

(i,j)
X/S to the NLP. At the

robust optimum, two minimal distance constraints
are active for bounds h1 and h2 with l(i,j) =

√
2

as shown in Fig. 4. This guarantees that the spec-
ified bounds hold despite the disturbances. The
resulting design is summarized in Table 2.

Table 2. Optimal operating point

Parameter Value Parameter Value

Sf 17.82 g
L

D0 0.218 1
h

X(0) 5.33 g
L

S(0) 4.50 g
L

P (0) 16.61 g
L

Kc −7.19

τi 0.1098h

5. CONCLUSIONS

In this paper an extension to the method of Con-
structive Nonlinear Dynamics has been presented.
This approach enables the robust optimization of
nonlinear systems such that specified dynamics or
feasibility can be guaranteed even in the presence

of uncertainty. Here, the idea of backing off from
critical manifolds is extended from steady state
design to constraints on trajectories of nonlin-
ear systems. Minimal distance constraints based
on normal vector directions to critical manifolds
of grazing points and endpoints guarantee that
bounds on states and inputs hold for all times even
in the presence of fast disturbances. For closed
loop systems, this method can be used for the
simultaneous system and control design. The case
study presented in this paper shows the feasibility
of the approach for robust control and process
design in the presence of fast disturbances. In
this study only simple disturbance signals were
considered. In the future, therefore the influence
of more complex disturbances will be investigated.
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