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Abstract: Many industrial processes exhibit spatially distributed behaviour and are dis-
tributed parameter systems (DPS). Much of the current literature has focused on the
control of specific types of DPS, such as those modelled by hyperbolic or parabolic
partial differential equations (PDEs). State space models for these systems (termed as
2-D systems) have also been studied extensively, however additional techniques are
required to deal with boundary conditions. In this paper, general boundary conditions for
discretized 2-D state space models are formulated in the state space domain. A controller
is developed for boundary control problems using the discretized state space method.
Simulation results indicate that the resulting boundary controller can achieve desirable
performance for setpoint tracking.
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1. INTRODUCTION

Distributed parameter systems (DPS), in which the
state variables change with space and time, are com-
mon in industry. Examples include sheet forming,
fixed bed reactor, and metallurgical processes. DPS
models can be obtained by application of mass and
energy conservation laws and often take the form of
partial differential equations (PDEs). Active research
has been focused on control development for DPS
based on PDE models (Christofides, 2000; Neittaan-
maki and Tiba, 1994; Godasi et al., 2002; Shang et
al., 2005). Most of these PDE-based controllers ad-
dress specific classes of PDE systems (e.g., hyperbolic
or parabolic). Owing to lack of a general model struc-
ture and their continuous nature in both dimensions
(e.g., time and space), PDE models can hardly be used
for model identification when first principal modelling
cannot be achieved.

1 Corresponding Author: hshang@laurentian.ca

Research into the use of state space models for DPS
started in the mid-1970s. It is noted that DPS have
been termed as infinite dimensional systems for re-
searchers using PDE model based approaches while
the community using state space approaches has used
the term 2-D system to represent DPS that has two
independent variables. In this paper, we follow the
convention of using the term 2-D systems in state
space approaches. Roesser (1975) extended the state
space model for lumped parameter systems (LPS) (1-
D) to a 2-D discrete, linear time invariant state space
model with potential applications in image processing
(Roesser, 1975). Almost simultaneously, Fornasini
and Marchesini also proposed a state space model for
2-D systems (Fornasini and Marchesini, 1976). It was
shown that the Roesser model was more general, as the
Fornasini and Marchesini model could be rewritten in
the Roesser model form (Kung et al., 1977). The limi-
tations of the Roesser model are that it requires causal-
ity of the state variables in the spatial direction as
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well as in time, and it can only represent systems with
unilateral boundary conditions due to the assumption
of causality in space (Marszalek, 1984). In the follow-
ing years, the Roesser model was studied extensively
(Kaczorek, 1985; Chen and Tsai, 2002; Hernández
and Arkun, 1992) and its application extended to
various fields (Wellstead et al., 2000; Galkowski et
al., 2000). More recently, a multi-dimensional state
space model that does not require causality in space
was presented (D’Andrea, 1998; D’Andrea and Chan-
dra, 2002); thus, it has the potential to represent
those DPS with bilateral boundary conditions. The
model has been used for formulating distributed con-
trol problems for spatially interconnected systems
(D’Andrea and Dullerud, 2003), vehicle formation
(Fowler and D’Andrea, 2002), and sheet forming pro-
cesses (Stewart, 2000). Existing state space models
and control developments have mainly addressed DPS
with distributed input and distributed output where the
effect of boundary conditions has been simplified.

Although distributed control is becoming more practi-
cal with continuing advances in the technology of sen-
sors and actuators (D’Andrea and Dullerud, 2003), for
many systems, control actions cannot be performed at
every point. An example is a boundary control system,
where manipulated variables can only be implemented
at the boundaries (Abu-Hamdeh, 2002). The impor-
tance of boundary control problems is well recognized
and boundary controllers have been developed for sys-
tems described by PDEs or integral equation models
(Chakravarti and Ray, 1999; Alvarez-Ramirez, 2001).

In this paper, a discretized 2-D state space model
with general boundary conditions is formulated, and
the resulting framework is used to develop a bound-
ary controller. Simulations are performed to examine
the effectiveness of the resulting boundary controller,
and indicate that the developed boundary controller
can generate a desirable output response to setpoint
changes.

2. 2-D STATE SPACE MODELS

DPS can commonly be classified into systems with
distributed inputs and distributed outputs, and those
with boundary inputs and boundary or spatially uni-
form outputs.

2.1 Distributed Input

The discretized state space model of a DPS with
distributed input and distributed output is composed
of state equations, boundary conditions and an output
equation:
state equations

⎡
⎣ xL(i + 1, j)

xR(i − 1, j)
xV (i, j + 1)

⎤
⎦ =

⎡
⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦

⎡
⎣ xL(i, j)

xR(i, j)
xV (i, j)

⎤
⎦

+

⎡
⎣ B1

B2

B3

⎤
⎦ u(i, j), (1)

boundary conditions

xL(1, j) = α11x
R(1, j) + α12x

V (1, j),

xR(N, j) = α21x
L(N, j) + α22x

V (N, j), (2)

output equation

y(i, j) = C1x
L(i, j)+C2x

R(i, j)+C3x
V (i, j), (3)

where i indicates the spatial index and j indicates
the time index, xL(i, j) ∈ Rm1 is the distributed
state variable evolving horizontally (or spatially) in
one direction, xR(i, j) ∈ Rm2 is the state variable
evolving horizontally (or spatially) in the opposite di-
rection, xV (i, j) ∈ Rm3 is the state variable evolving
vertically (or in time), u(i, j) ∈ R is the distributed
input and y(i, j) ∈ R is the distributed output. In the
above equations, all As, Bs, Cs and αs are constant
matrices with proper dimensions. Equations (1) to (3)
represent a DPS with a finite range and i ∈ [1, N ].

In the existing literature, the systems addressed were
assumed to be of infinite extent or periodic, meaning
boundary conditions were not imposed. Recently, sys-
tems of finite extent possessing a certain symmetry
structure were addressed (Langbort and D’Andrea,
2005). For PDE systems, boundary conditions play
an important role in the solution technique and the
process dynamics. Equation (2) provides a general
formulation for boundary conditions in DPS since it
can describe any linear boundary condition for PDE
systems.

2.2 Boundary Input

In many DPS, the manipulated input is located on a
boundary. Without loss of generality, it is assumed that
the input variable appears on the boundary xL(1, j).
The state space model can be described as:
state equations⎡
⎣ xL(i + 1, j)

xR(i − 1, j)
xV (i, j + 1)

⎤
⎦ =

⎡
⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦

⎡
⎣ xL(i, j)

xR(i, j)
xV (i, j)

⎤
⎦ ,

(4)
boundary conditions

xL(1, j) = α11x
R(1, j) + α12x

V (1, j)

+ βu(j),

xR(N, j) = α21x
L(N, j) + α22x

V (N, j), (5)

output equation
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y(j) =
N∑

i=1

c1ix
L(i, j) +

N∑
i=1

c2ix
R(i, j)

+
N∑

i=1

c3ix
V (i, j). (6)

Equation (6) is a general output representation includ-
ing the value of the state variables on one boundary or
any other spatial point, or the weighted average of the
state variables. In this paper, the case when u(j) ∈ R
and y(j) ∈ R are scalars is considered.

The state space model in Equations (4) to (6) describes
the general boundary control problem when the ma-
nipulated input appears on one boundary. Physically
meaningful boundary conditions, such as Dirichlet,
Neumann or mixed boundary conditions for PDEs,
can be written in the form of Equation (5). Most
available studies on boundary control have focused on
specific types of PDE systems and specific boundary
conditions (e.g., boundary value of the state variables
is equal to the input). Equations (4) to (6) provide a
general state space framework for boundary control
problems which can be used in control development,
model identification as well as and system studies.

3. BOUNDARY CONTROL

In this section, a boundary controller is developed for
systems modelled by Equations (4) to (6).

From Equation (4), xL can be expanded to yield:

xL(i, j) = Ai−1
11 xL(1, j) + Ai−2

11 A12x
R(1, j)

+ · · · + A12x
R(i − 1, j) + Ai−2

11 A13x
V (1, j)

+ · · · + A13x
V (i − 1, j). (7)

The state variables in an extended vector form are
defined as follows:

xL(j) =
[
xL(1, j) xL(2, j) · · ·xL(N, j)

]T
,

xR(j) =
[
xR(1, j) xR(2, j) · · ·xR(N, j)

]T
,

xV (j) =
[
xV (1, j) xV (2, j) · · ·xV (N, j)

]T
. (8)

Applying the boundary conditions (5), Equation (7)
can be expressed as:

xL(j) = ΦxR(j) + ΓxV (j) + θu(j) (9)

where Φ = [φkl], φkl ∈ Rm1×m2 , Γ = [γkl], γkl ∈
Rm1×m3 , θ = [θk], θk ∈ Rm1×1, k = 1, · · · , N, l =
1, · · · , N, and

φkl =

⎧⎨
⎩

Ak−1
11 α11 + Ak−2

11 A12, k = 1, · · · , N, l = 1,

Ak−l−1
11 A12, k = 3, · · · , N, 1 < l < k,

0, else,

γkl =

⎧⎨
⎩

Ak−1
11 α12 + Ak−2

11 A13, k = 1, · · · , N, l = 1,

Ak−l−1
11 A13, k = 3, · · · , N, 1 < l < k,

0, else,

θk = Ak−1
11 β, k = 1, · · · , N. (10)

Substituting Equation (9) and boundary conditions (5)
into Equation (4), the expression for xR in an extended
matrix form is obtained:

xR(j) = ΨxR(j) + ΞxV (j) + ζu(j) (11)

where Ψ = [ψkl], ψkl ∈ Rm2×m2 ,Ξ = [ξkl], ξkl ∈
Rm2×m3 , ζ = [ζk], ζk ∈ Rm2×1 and

ψkl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A21A
k
11α11 + A21A

k−1
11 A12,

k = 1, · · · , N − 1, l = 1,

A21A
k−l
11 A12,
k = 2, · · · , N − 1, 1 < l ≤ k,

A22, k = 1, · · · , N − 1, l = k + 1,

α21A
k−1
11 α11 + α21A

k−2
11 A12, k = N, l = 1

α21A
k−l−1
11 A12, k = N, l = 2, · · · , N − 1,

0, else,

ξkl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A21A
k
11α12 + A21A

k−1
11 A13,

k = 1, · · · , N − 1, l = 1,

A21A
k−l
11 A13,
k = 2, · · · , N − 1, 1 < l < k,

A23, k = 1, · · · , N − 1, l = k + 1,

α21A
k−1
11 α12 + α21A

k−2
11 A13, k = N, l = 1

α21A
k−l−1
11 A13, k = N, l = 2, · · · , N − 1,

α22, k = N,L = N,
0, else,

ζk =
{

A21A
k
11β, k = 1, · · · , N − 1

α21A
k−1
11 β, k = N

(12)

From the state equation in (4), the extended matrix
form of xV (j + 1) can be written as:

xV (j +1) = Q1xL(j)+Q2xR(j)+Q3xv(j) (13)

where Q1 = diag[A31] ∈ Rm3N×m1N , Q2 =
diag[A32] ∈ Rm3N×m2N and Q3 = diag[A33] ∈
Rm3N×m3N .

From Equations (9) and (11), xL and xR can be
rewritten:

xR(j) = (Im2N×m2N − Ψ)−1ΞxV (j)

+ (Im2N×m2N − Ψ)−1ζu(j),

xL(j) = (Φ(Im2N×m2N − Ψ)−1Ξ + Γ)xV (j)

+ (Φ(Im2N×m2N − Ψ)−1ζ + θ)u(j), (14)

where Im2N×m2N is an identity matrix of dimension
m2N by m2N . Well-posedness of the systems re-
quires that (Im2N×m2N−Ψ) be invertible. The output
equation in (6) can be written in matrix form:

y(j) = C1xL(j) + C2xR(j) + C3xV (j), (15)
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where C1 = [c11, c12, · · · , c1N ], C2 = [c21, c22, · · · , c2N ],
and C3 = [c31, c32, · · · , c3N ].

Substituting Equation (14) into Equations (13) and
(15) yields:

xV (j + 1) = ΩxV (j) + ϕu(j),

y(j) = FxV (j) + Du(j), (16)

where

Ω = Q1(Φ(Im2N×m2N − Ψ)−1Ξ + Γ)

+ Q2(Im2N×m2N − Ψ)−1Ξ) + Q3,

ϕ = Q1(Φ(Im2N×m2N − Ψ)−1ζ + θ)

+ Q2(Im2N×m2N − Ψ)−1ζ

F = C1(Φ(Im2N×m2N − Ψ)−1Ξ + Γ)

+ C2(Im2N×m2N − Ψ)−1Ξ) + C3,

D = C1(Φ(Im2N×m2N − Ψ)−1ζ + θ)

+ C2(Im2N×m2N − Ψ)−1ζ. (17)

Note that Equation (16) takes the same form as a state
space model for LPS. If the setpoint profiles for the
state variables xV could be calculated for any output
setpoint changes, the abundance of existing control
theory and techniques for LPS could be applied to
the control of DPS. The boundary control design pre-
sented in this paper is focused on convergence of the
output to the setpoint. An alternative design problem
would examine convergence of the state variables to
the origin, incorporating the problem of state estima-
tion using output measurements. This problem will be
examined in future research.

Assume that D = 0 in Equation (17), meaning that
at least one sampling time is needed for the input to
affect the output. In fact, the time required for the im-
pact of the input to reach the output can be significant
for boundary control problems, especially when the
input is at one boundary and the output at the opposite
boundary. The delay phenomenon in boundary control
problems can be systematically defined by a time de-
lay index, kd, such that

FΩlφ = 0, l = 1, · · · , kd − 2,

FΩkd−1φ �= 0. (18)

When the conditions in Equation (18) hold, the system
is called to have a time delay of kd. The future output
in the next kd steps can be written:

y(j + l) = FΩlxV (j), l = 0, 1, · · · , kd − 1,

y(j + kd) = FΩkdxV (j) + FΩkd−1φu(j). (19)

Then control can be developed such that

(y(j + kd) − r) =
kd−1∑
l=0

λl(y(j + l) − r), (20)

where r is the setpoint for the output y, λl are tun-
ing parameters that should satisfy λl > 0, l =

0, 1, · · · , kd − 1 and
kd−1∑
l=0

λl < 1 for stability of the

tracking error dynamics. One choice of tuning param-
eters is λ0 = λ1 = · · · = λkd−1 < 1

kd
. From Equation

(20), the boundary controller can be formulated as:

u(j) =

kd−1∑
l=0

λl(FΩlxV (j) − r) − (FΩkdxV (j) − r)

FΩkd−1φ
.

(21)

The controller described in Equation (21) can drive
the output to the setpoint, with its behaviour depend-
ing on the choice of the tuning parameters λl. The
time delay index is usually kd ≥ 1. When the input
is on one boundary and the output on the opposite
boundary, the time delay index is greatest and could
be close to or greater than the residence time. In this
case, the boundary control input in Equation (21) is a
function of the state variables at all spatial points. The
performance of the controlled output can be improved
because the controller takes into account the response
of the current output and future outputs (within the
delay horizon). An additional advantage of this control
method is that the resulting control is robust to sensor
failures at some spatial points.

4. SIMULATIONS

The boundary controller developed above is evalu-
ated using two examples: a second order parabolic
PDE system and a hyperbolic countercurrent heat ex-
changer.

4.1 Parabolic PDE

Consider a system described by

∂s(z, t)
∂t

= a
∂s(z, t)

∂z
+ b

∂2s(z, t)
∂z2

− cs(z, t) (22)

with boundary conditions

s(0, t) = u(t),
∂s(z, t)

∂z

⏐⏐⏐
z=L

= 0, (23)

where t indicates time, z indicates the spatial coor-
dinate, s(z, t) is the distributed state variable, and
a=0.005, b=0.1, c=0.05. The manipulated input u(t)
is the inlet value of the state variable s(z, t). The con-
trolled output is the outlet value of the state variable
s(z, t), i.e., y(t) = s(L, t). The parabolic system
described here may represent an isothermal tubular
reactor with diffusion and convection.

A state space model for the system described by (22)
and (23) can be derived using different approaches
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(e.g., numerical discretization, state space identifica-
tion, analytical solutions). For the sake of simplicity,
the finite difference method is applied to the PDE
system and yield the state space model:

⎡
⎣ xL(i + 1, j)

xR(i − 1, j)
xV (i, j + 1)

⎤
⎦ =

⎡
⎣ 0 0 1

0 0 1
η1 η2 η3

⎤
⎦

⎡
⎣ xL(i, j)

xR(i, j)
xV (i, j)

⎤
⎦ ,(24)

xL(1, j) = u(j),

xR(N, j) = xV (N, j),

y(j) = xV (N, j). (25)

Using the controller in (21), it is found that the system
has a time delay of kd = N = 6. The tuning pa-
rameters used are λ = [ 0 0.01 0.15 0.12 0.21 0.5 ].
Figure (1) shows the closed-loop response to setpoint
changes. It is observed that the output reaches the
setpoint quickly with smooth control action.

Fig. 1. Response of the parabolic PDE with boundary
control to setpoint changes

4.2 Countercurrent Heat Exchanger

This example shows the application of the devel-
oped boundary controller to a countercurrent heat ex-
changer. Figure (2) shows the diagram of the system.
The controller is designed to regulate the outlet tem-
perature of the cold water by manipulating the inlet
temperature of the hot water. Assuming that heat trans-
fer to the environment is negligible, the system can be
modelled as follows (Abdelghani-Idrissi et al., 2001):

∂Th

∂t
=−Vh

∂Th

∂z
+ VhNh(Tw − Th),

∂Tc

∂t
= Vc

∂Tc

∂z
+ VcNc(Tw − Tc), (26)

∂Tw

∂t
= VhChNh(Th − Tw)

+ VcCcNc(Tw − Tc),

with boundary conditions

Th(0, t) = u(t),

Tc(L, t) = Tco (27)

where subscripts h, c, and w refer to hot stream, cold
stream, and wall temperatures respectively.

Fig. 2. Diagram of the countercurrent heat exchanger

The state space model of the system takes the form of:

⎡
⎢⎢⎢⎢⎣

xL
h (i + 1, j)

xR
c (i − 1, j)

xV
w (i, j + 1)

xV
h (i, j + 1)

xV
c (i, j + 1)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 0 0 1
0 0 α1 α2 α3

α4 0 α5 α6 0
0 α7 α8 0 α9

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

xL
h (i, j)

xR
c (i, j)

xV
w (i, j)

xV
h (i, j)

xV
c (i, j)

⎤
⎥⎥⎥⎥⎦

y(j) = K1x
V (j) (28)

with boundary conditions:

xL
h (1, j) = u(j)

xR
c (N, j) = Tco (29)

The boundary control performance was evaluated by
examining the closed-loop output response to changes
in the setpoint. Using the developed control method,
the delay time was calculated to be 3 time units. Fig-
ure (3) shows that the outlet cold-water temperature
displays a stable response and quick convergence to
the setpoint under the boundary controller with λ =
[ 0 0.3 0.6 ].

Fig. 3. Response of the heat exchanger with boundary
control to changes in setpoint

5. CONCLUSIONS

This work has demonstrated how boundary conditions
can be incorporated and used for controller design
in discretized 2-D state space models for distributed
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parameter systems. State space models with general
boundary conditions are formulated for systems with
either distributed or boundary inputs. The controller
design approach is presented for systems with bound-
ary input. Time delay can arise because of the spatially
distributed nature of the process, and is defined in
terms of the state space model parameters. The re-
sulting controller demonstrates good performance for
systems with a significant time delay because the con-
troller determines the control input taking into account
the projected behaviour of the output over the time
delay horizon.The developed boundary controller was
evaluated by simulation using both a parabolic system
and a countercurrent hyperbolic system. The results
show that, under the boundary controller, the output
converges to the setpoint in a quick and smooth way
without aggressive control action.
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