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Abstract: This paper presents an explorative work about a Model Predictive Control 
(MPC) technique. A nonlinear model predictive controller was designed and applied to a 
fedbatch bioprocess. First, bioprocess and its model are described. Then, a controller 
based in a nonlinear MPC scheme (Dual Fuzzy Model Predictive Control DF-MPC) is 
proposed with the aim to test the control of substrate concentration in simulation and to 
conclude about its ability to tackle the difficulties inherited from the bioprocess batch 
operation mode. In addition, different kinds of disturbances were applied showing the 
powerful disturbance rejection of the controller. Copyright © 2002 IFAC
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1. INTRODUCTION 

Despite most theoretical advances in process control 
are focused on continuous operations, batch 
processes have an important role in industrial field. 
Their inherent nonlinear nature and time variability 
increase complexity and make difficult the control 
tasks (Gutiérrez, Rincón and Alvarez, 2005).  

In the last years, it is particularly amazing the 
introduction of biotechnological processes into the 
industrial field. Many commercial products like 
foods, pharmaceuticals and insecticides are produced 
by processes that involve living organisms. The 
increment of biotechnology-based products 
introduces new necessities in the industrial scope.  
The development of the biotechnological industry 
has still many challenges to affront. One of them is 
associated with control, mainly because most of 
bioprocesses operate in batch or fedbatch mode.  

Controlling a bioprocess is not an easy work. Batch 
nature of most of bioprocesses produces difficulties 
when control is intended. In general, batch processes 
have some particularities that complicate control 
tasks. The major difficulty is associated with time-
varying operating point. Along a batch run the 
transformations proceeds from an initial state to a 
final state under quite different conditions, therefore 

all process variables and some parameters are in 
permanent change. Such parameters time variation 
can generate nonlinearities. Therefore, control 
problem cannot be attacked using conventional 
linearization model techniques. In addition, the 
inherently transitory behavior of the variables and 
parameters generates internal disturbances 
(Gutiérrez, Rincón and Alvarez, 2004), e.g., the cells 
growth kinetics in bioprocesses.  

Model Predictive Control (MPC) is an attractive 
technique to achieve a desired process behavior 
despite the difficulties mentioned previously. Its 
ability to predict future process behavior allows the 
controller to select the best control action according 
the designer criteria. Nonlinear formulation of MPC 
is even more attractive because the bioprocess model 
used here is highly nonlinear.  

The aim of this work is the design of a controller for 
a bioprocess, able to affront difficulties inherited 
from batch operation mode. Additionally, a nonlinear 
controller is proposed making use of a restrictive 
enumerative optimization technique to generate a set 
of control policies (Alvarez, 2000), i.e., the set of 
possible control actions to evaluate in the cost 
functional. 
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2. BIOPROCESS MODEL 

The bioprocess chosen for this work is a Fedbatch
Fermentation of Bacillus thuringiensis (Bt). This
microorganism has been widely used to produce
biologic pesticides over the world. Bt is specie I from
Bacillus genre. Species from this group are
sporulated and Gram positive bacterias.

Bacillus thuringiensis biological cycle is illustrated
in Fig. 1. During vegetative stage, cellular
reproduction occurs by binary fission. When
vegetative cells stop growing the sporulation stage
begins. Inside the cell a spore and a crystal are 
formed. Sporulation process finishes with the
breaking of cellular wall and spore and crystal are 
released to the environment. This process is named
cellular lysis. Finally, the spore can be isolated and 
prepared for its germination becoming a new
vegetative cell and completing Bt biological cycle.
Notice that Bt produces one or more crystalline
bodies during sporulation process. Such crystals are
named delta endotoxins, some of them are toxic for a
variety of insect species and this property makes Bt

an important microorganism in biological pesticides
industry.

Vegetative
growth Sporulation

Lysis
Germination

Fig. 1. Biological cycle of Bacillus thuringiensis

The model used in this work (Atehortúa, 2004)
describes growth, sporulation, death and lysis. Other
factors in Bt fermentation process are the dissolved
oxygen, pH and temperature. The model does not
include such dynamics, i.e, and suppose them to be 
controlled. Consider the bioprocess flow diagram in
Fig. 2. Feed flow contains only substrate for cellular
growth. The phenomenological model contains four
states: volume V, vegetative cells concentration Xv,
sporulated cells concentration Xs, and primary
substrate concentration Sp.
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Fig. 2. Bioprocess flow diagram, the subindex sm

indicates substrate medium feeding to the system.

The model is defined by the following differential
equations:
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Fin is the inlet flow of pH control reactants and 
antifoaming agent. Fsm is the feed flow of substrate
medium, Sp,sm is the substrate concentration in the
feed flow. YX/S denotes biomass-substrate yielding
coefficient and ms is the maintenance coefficient. ks,
ke, kl and µ are kinetic parameters defined as follows:
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Where ks denotes the specific velocity of cellular
sporulation, ke denotes the specific velocity of natural
death of vegetative cells, kl is the lysis specific
velocity of sporulated cells and µ is the specific
velocity of vegetative growth. µ is given by the
Monod growth model where µmax is the maximum
specific velocity of cellular growth and Ks is the
substrate saturation constant. The subindex fix

indicates constant or fixed parameter. a, aa, b, c and 
e are constants values identified for this particular
bioprocess. Notice that the equations describing the
specific velocities ks, ke, and kl are sigmoids in
function of substrate concentration, time and
vegetative cells concentration respectively, and show
high nonlinearities associated to bioprocess model.

3. NONLINEAR MODEL PREDICTIVE
CONTROL USING POLICIES GENERATION

MPC is an advanced control strategy that integrates
many tools and fundamentals from other control
techniques. The use of a process model in order to
predict the plant immediate future is the main
feature. MPC takes into account the feedforward and 
feedback control actions and integrates input and
state constraints (process, economics, safety, 
environmentals, etc).

The NMPC (Nonlinear Model Predictive Controller)
designed in this work must search for the best control 
action generating control policies. In order to obtain
the best control policy, many works have focused on
a solution through gradient based techniques (Boyd
and Vandenberghe, 1996). On the other hand, there
are some techniques named enumerative techniques
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(ET) that require heavy computational demand but
they offer more feasible control policies than others.

When ET are used, the best control policy is found
by solving a programming or numeric problem. One
of the difficulties of solving the numerical problem is
to find a feasible control action before each sample
time. When the model is nonlinear, the solution of 
the optimization algorithm loses convexity. Thus,
finding the best solution is difficult and when it is
found, the global minimum can not be guaranteed.
Hence, in order to get a good control policy, the
optimizer must evaluate quickly and repeatedly the
cost beginning from a set of generated control
policies and at each evaluation the nonlinear
differential system must be solved. With the values
obtained from iterations of numerical algorithm,
optimizer calculates the numerical value of cost.

These tasks take more time and computation than
linear case. It is important to take into account that
the “optimality degree” of the problem depends on
the amount of generated policies (Np). Restricted
Enumerative Optimization with Control Horizon
equal to three (REO3) is an evolution of Restricted
Enumerative Optimization with control horizon
equal to one (REO1) (Álvarez, 2000). REO1 
procedure is as follows: first the controller explores
all the valve possible movements, taking into account
its spam and sample time constraint. When the
controller selects a valve position, it maintains this
value until the end of prediction horizon. Despite
REO1 is a powerful policies generator, MPC needs
that dynamical information delivered to the
prediction model be as variable as possible. Hence
REO3 generates (Np)3 policies regarding all the
variation possibilities with a control horizon equal to 
three. Notice that if the initial amount of policies Np 
is equal to 36 then the total policies generated (Np)3

is 46.656. The next procedure of REO3 is the
evaluation of each policy in the prediction model. It
is computationally hard for the controller. In order to
affront this difficulty, REO3 reduces the
computational load applying important criteria based
on control theory. The idea is to reduce the policies
number to (Np/4)3, e.g., (Np/4)3 = 729.

4. DUAL FUZZY MODEL PREDICTIVE
CONTROLLER

In this section the design of a nonlinear model
predictive controller is presented: dual model
predictive controller with fuzzy terminal region, DF-
MPC (Dual Fuzzy Model Predictive Control). The
suggested control scheme has Dual Mode Controller
(Mayne and Michalska, 1993), where a terminal
region is defined around the set point. One
disadvantage of a Dual Mode Controller is an abrupt
commutation between the MPC and a linear
controller tuned inside a terminal region ( ). An 
important feature of DF-MPC is doing a soft
transition through a Fuzzy Set that commutates step 
by step the controllers. Another feature that
differences DF-MPC from Dual Mode Controller is
that MPC is not replaced by linear controller inside 

the terminal region, but the controller is gradually
transformed into a PI controller, i.e., there is a cost
term, whose weight parameter is a Fuzzy Set that
penalizes the difference between the MPC and a well
tuned PI Controller. Notice that if the MPC is similar
to a PI controller, such a cost tends to its 
minimization.

This Controller uses Restricted Enumerative
Optimization with Hc=3 (REO3) and a Fuzzy region,
such that the transition between the controllers (MPC

 PI y PI MPC) be soft. This is accomplished
through a set point proximity criterion instead an
abrupt or hard commutation in a region that is
mathematically hard to define in most of cases. That
is, the Dual Mode Controller is similar to Gain
Scheduling Adaptive Controller (Aström and 
Wittenmark, 1989), its stability can’t be guaranteed
due to hard commutation between the regions.
Finally, PI controller is used as linear controller
inside  because driving the nonlinear process model
to a standard form (local linear state feedback) is so
difficult.

DF-MPC is based on the state location in the state-
space. The fuzzy region (conformed by  and a
neighborhood around it) is a Z Fuzzy Set, where
there are four tuning parameters:  and  usually
employed in MPC and the new ones  and  inside
the cost functional. In Fig. 3 a two-variable state-
space is depicted. X1 and X2 are the states,  is the
linear region where PI controller operates, SP is the
Set Point, TR is the Transition Region where the
fuzzy commutation between the controllers (MPC to
PI and PI to MPC) is effectuated.

Fig. 3. Two-Variable State Space. X1 and X2 are the
states. SP is the Set Point. is the linear region.
TR is the Transition Region

In other words, controller operation is as follows:
When the state is outside of transition region a pure 
MPC operates, that is, ,  and  take an initial
values and the fuzzy parameter  is zero. After 
crossing the boundary of TR the controller begins to
change its parameters ,  and  according  changes.
That is, parameter tends to one and ,  and  tends
to zero while the state approaches to . This allows
operating only with the cost term related to  and
canceling the cost terms related with ,  and . The
last idea can be shown explaining the cost functional
inside DF-MPC. In this work, the cost functional is a 
topic that differs from the MPC regular approaches.
The DF-MPC cost functional penalizes the output
error and the manipulated input changes between
consecutive steps. It also penalizes the output
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changes and the difference between the MPC and the
PI Controller. The Cost Functional is: 
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Notice that the parameters change in each step of the
algorithm when the state is inside the TR. Hc is the
control horizon and Hp is the prediction horizon.
From the cost functional, parameter penalizes the
error between output with respect to the set point.
Tuning of  parameter tries to avoid the hard
movements of the control final element between two
consecutive steps and parameter executes the same
task than , but on output.  tries to soft the output
response compensating the process inertia.
parameter looks for the MPC emulates to a PI
controller on the linear region . Here, the technique
has a benefit in comparison to the original approach
(Mayne and Michalska, 1993) because DF-MPC
does not commutate the controllers. Furthermore,
inside  the cost functional is transformed to:
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That is, on ,  tends to one and ,  and  tend to 
zero while the output error tends to zero. Notice that
in TR the MPC turns softly into a PI controller,
because the difference among controllers weight
(MPC and PI) has more relevance than the other
weights. The Fig. 4 shows how  changes while the
output error tends to zero. The length of the
transition zone is modified by a designer criterion.

Fig 4. Z Fuzzy Set of the  parameter. Lambda
( ) variates from zero to one according to
the error position Ey-SP.

Finally, cost functional parameters are defined as
follows:

)1(*)(1)( kk (11)
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Notice that ,  and  varies at each iteration (k) and
the variation depends on its initial conditions and the 
 value in each sample time.

5. APPLICATION OF DF-MPC TO THE
BIOPROCESS.

In this point a DF-MPC Controller for substrate
regulation in a Bt fedbatch culture is presented.
Despite the bioprocess is effectuated in a fedbatch 
mode, notice that the process is continuous for the
substrate (defining substrate inside the bioreactor as a
system) because it is being permanently fed to the
bioreactor and simultaneously cells consume it.
Another significant issue is: why substrate
regulation? The basic idea is controlling substrate
concentration inside the bioreactor, and the way is 
manipulating the substrate inlet flow to the 
bioreactor. The biotechnological knowledge about
fedbatch cultures indicates that substrate 
concentration is one of the most influential
conditions for an adequate bacterial growth.

The values used in simulation for the controller
designed are the followings: Initial values: substrate
concentration Sp=9.718g/l, vegetative cells 
concentration Xv=0.645g/l, volume V=11.0l and fresh
medium flow Ffm=0. Tuning parameters of the DF-
MPC are =100, =8, =10. Control horizon Hc=3
because REO3 is used, prediction horizon Hp=10.
The amount of policies generated is Np=32. It 
implies the total evaluation of 512 policies on each
sample time. Notice that REO3 makes a reduction of
the possibilities. Such trim reduces the policies from
32768 to 512. Operation conditions: Set point is 
fixed in SP=10g/l, linear region  is defined around
the SP value after 0.02 g/l and transition region TR is 
between 0.02g/l and 0.1g/l around the SP value. The
valve span is the maximum value that the valve
opens in each sample time, and it is 5%. It is 
important to regard that the  and TR values are not
implementable physically, but in simulation such 
implementation is possible.

6. RESULTS

In this section, simulation results for the designed
controller are presented. Some plots about process
performance, response to external and internal
disturbances are shown. A purpose is to expose how 
the designed controller (DF-MPC) handles the
fedbatch process even when disturbances occur. First
result is the performance of DF-MPC without
disturbances. Cellular growth is shown in Fig. 5,
notice that vegetative cells reach a maximum value 
when sporulation begins. Fig. 6 shows the substrate
concentration during the first 7 hours until the valve 
saturation, as it is shown in Fig. 7. When vegetative
cells reach a maximum value, the valve closes 
immediately to stop substrate flow. So the process
evolves naturally to obtain the maximum crystal
concentration (Atehortúa, 2004). 

However, performance of the controller designed for
regulation must be also proven with respect to
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disturbances. In this work, an analysis about internal
and external disturbances is made. External
disturbance is defined as substrate concentration of
inlet flow (Sp,sm). In addition, the batch process has
particular disturbances called internal disturbances,
i.e., unexpected changes into the bioreactor that are 
not totally known. Furthermore there are
disturbances that the prediction model does not take
into account. Another kind of internal disturbances
are the dynamical effect of uncontrolled states (Xv,

Xs, V) into the controlled state Sp in the fedbatch run.
This type of disturbance is named fundamentally
internal disturbance (Gutiérrez, Rincón and Alvarez,
2005). In the present work an applied internal
disturbance is an unexpected consumption of
substrate by other microorganism into the bioreactor
for an instant.

Fig. 5. Cellular Growth (Total batch run)

Fig. 6. Substrate Regulation (Zoom).

Fig. 7. DF-MPC Control Action (Zoom)

6.1. External Disturbances

DF-MPC rejects correctly the external disturbances
when the substrate concentration in the feed Sp,fm

changes positively, even a high one is well tackled 
(100% from the original concentration). When the

external disturbances are negative, the DF-MPC must
saturate the valve while the substrate is consumed.
Fig. 8 shows the output response to multiple
disturbances with different amplitudes at different
times (10%, 20%, 30% and 40% at one, two, three
and four hours respectively). An important feature
that difficult batch process control is the instant of
the batch run when disturbance appears, that is, 
because disturbance effects change with time, even if
the disturbance amplitude is the same.

Fig. 8. Substrate Regulation with External
Disturbances (Zoom).

Fig. 9. Control Action when External Disturbances
are applied to the Bioprocess (Zoom).

6.2. Internal Disturbances

This kind of disturbances is well rejected depending
on its application instant and its amplitude. It is 
essential to remark that some internal disturbances
occur during all the process: those produced by non
controlled states, i.e, vegetative cells (Xv) are
consuming substrate (Sp), so the state Xv is changing 
permanently. The other internal disturbances are
applied to the process in two times: at the beginning
of the batch run (first hour) and at the end of the
controllable process phase (fifth hour). It is important
to remark that internal disturbances applied are
negative in sign with respect to the set point, that is, 
there is a substrate disappearance inside the
bioreactor. If these disturbances are positive the MPC
would not act because substrate would be exceeded
and cells would eat with their natural dynamics. The 
results of internal disturbances applied at the first 
hour are shown in Figs. 10 and 11 for a maximum
disturbance percent (80%). Notice that, the substrate
concentration is also drastically reduced inside the 
bioreactor and the DF-MPC drives the process to the
set point again. In addition, DF-MPC operates in all 
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the state-space because it was designed to operate in
a nonlinear way, that is, a linear MPC controller
cannot operate as good as a nonlinear one. The Fig.
11 shows how the final control element (a valve)
moves under DF-MPC orders. Likewise, internal
disturbances applied in the fifth hour are shown in
Figs. 12 and 13 with a maximum disturbance (60%).
Observe an important result: In this fedbatch process, 
disturbances are more harmful at the end of the
process than the beginning.  Notice that before the 
internal disturbance occurs, DF-MPC regulates the
substrate in the set point and control actions are soft
as it is shown in Fig. 13. In the same figure it can be
seen that DF-MPC tries to drive the process to the set
point, but in such point controllability is lost again. 

Fig. 10. Substrate Regulation with Internal
Disturbance applied at the first hour (Zoom).

Fig. 11. Control Action when Maximal Internal
Disturbance is applied at the first hour.

7. CONCLUSIONS

As it was mentioned above, this work is an
exploration about a new MPC technique. A nonlinear
MPC controller with dual fuzzy set strategy was
designed. One of the aims of this work is verifying
how the controller designed could affront the
particularities that difficult the bioprocess control, 
specially the difficulties inherited from its batch 
nature (Gutiérrez, Rincón and Alvarez, 2005).
Regulation was made to guarantee a maximum
growth of vegetative cells. The main problem 
associated to regulation was the fundamentally
internal disturbances, when substrate tries to 
maintain in the set point, the other states are 
permanently changing. These changes disturb the
regulated substrate value. The use of a MPC
technique based in Dual Mode (Michalska and
Mayne, 1993) could affront the fundamentally
internal disturbances, the internal (eventual) and
external disturbances. In this work, PI parameters

used for the DF-MPC could not be calculated to
guarantee stability. Future works must explore issues 
like parameter tuning of PI and MPC controllers for
batch process. An interesting suggestion is making
multivariable control based on the design presented
in this work.

Fig. 12. Substrate Regulation with Internal 
Disturbance applied at the fifth hour (Zoom).

Fig 13. Control Action when Maximal Internal
Disturbance is applied at the fifth hour (Zoom)
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