
ADCHEM 2006 

International Symposium on Advanced Control of Chemical Processes 

Gramado, Brazil – April 2-5, 2006

     

PREDICTIVE CONTROL OF ASYMMETRICAL PROCESSES

César de Prada, Smaranda Cristea 

Department of Systems Engineering and Automatic Control,  

University of Valladolid, Spain 
prada@autom.uva.es, smaranda@autom.uva.es

Abstract: This paper deals with the control of processes that present different dynamic 

responses for equal increments and decrements of its manipulate variable, showing a non 

symmetric response. Being non-linear systems, instead of using non linear general 

methods directly, the paper explores two alternative formulations based on an MPC 

approach that take advantage of its structure. An application example is provided showing 

the behaviour of the proposed methods. Copyright © 2006 IFAC
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1. INTRODUCTION 

There are many processes in which, when a positive 

change in the manipulated variable is performed, one 

obtains a dynamic response that is quite different, 

either in shape or magnitude, to the one that can be 

obtained with a similar, but opposite change in the 

same manipulated variable (Fig.1). 

We will denote these kind of processes as 

asymmetric. Examples of them can be found in 

several processes due, for instance, to different 

heating/cooling systems in chemical reactors. Other 

examples include the relation between the gas phase 

concentration and the pressure in a flash tank, or the 

one between head temperature and reflux flow in a 

distillation column. Clearly, they are non-linear and, 

as such, they pose a challenging problem to the 

control engineer. If tuned according to the “slow” 

response, they will present oscillations and 

overshoots in some operating conditions and if 

tuned according to the “fast” response, the closed 

loop will be also very slow in other cases.  

The answer is, of course, to take into account the 

non-linear characteristic of the process and to design 

a controller applying general methods for this type 

of systems. Nevertheless, one can ask himself if it is 

possible to gain advantage of the special structure of 

the system in order to obtain easier solutions, either 

in terms of modeling or in the controller. 

A control technique that has gained wide acceptance 

in industry is model predictive control (MPC). As it 

is well known, it is based in the use of an internal 

model for computing predictions of the model 

responses, over a given time horizon, as functions of 

the present and future values of the manipulated 

variables (Fig. 2). 
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Fig. 2 MBPC strategy 
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The manipulated variables are chosen by 

minimization of a cost function of the quadratic 

errors between the output predictions and a desired 

internal reference, under the constraint imposed by 

the model prediction equations. Usually, other 

additional constraints are included on the range and 

speed of the manipulated inputs, as well as on the 

admissible range of the outputs, and, perhaps, some 

others in order to guarantee some stability properties.  

If the internal model is linear, than the solution is 

obtained solving a QP optimization problem every 

sampling time. If not, the solution of a NLP problem 

is usually required, which increased considerably the 

complexity and computation time of the controller. 

In the literature, very few contributions can be found 

devoted specifically to this topic. Previous 

contributions to the mentioned problem appear for 

instance in (Doyle et al., 1995) and (Camacho and 

Bordons, 2000) but only from the point of view of 

general non-linear systems. In (Tan et al., 1998) the 

use of PID controller has focused on the control of 

processes with severe asymmetry where an automatic 

tuning procedure for gain-scheduled is described. 

This paper follows the non-linear MPC approach, 

but, at the same time, tries to re-formulate the model 

and the solution, in such way that, and this is the 

main contribution of the paper, for this particular 

kind of problems, an alternative and efficient 

formulation is obtained. The main point of the 

proposed method is the direct use of the linear 

models that could represent each of the two 

asymmetric dynamics of the process, instead of a 

more complex, perhaps first principles, non-linear 

model that could explain the whole system behavior, 

or the use of multiple linear models characteristic of 

other approaches. Using this internal model, two 

optimization algorithms are proposed that exploit its 

structure.

The paper is organized as follows: after the 

introduction, section II describes the internal model 

of the controller, then section III gives the first 

algorithm that includes a non-linear constraint. 

Section IV describes an alternative that leads to a 

mix integer algorithm. Finally, section V provides an 

application example showing the advantages of the 

proposed approach. 

2. INTERNAL PROCESS MODEL 

The use of linear models or a combination of them 

for representing a non-linear process is always an 

attractive approach because it leads very often to less 

complex controllers. In the so-called multi-model 

representation, a collection of linear models, each of 

which describing an operating point, are combined 

according to some fuzzy rules. The control action is 

computed for each of the models and the actual 

control applied to the process is a combination of the 

control actions computed from the different models. 

Existing methods can differ in implementation 

details. One of the main problems of this approach is 

how to establish the partitions between the different 

operating regimes.  

In our case, the nature of the problem is a different 

one, where the source of non-linearity is not the 

operating point but the direction of the changes in the 

manipulated input. It is assumed that the system 

responses to both, positive and negative inputs, can 

be characterized by discrete transfer functions that 

will be denoted as G+(q-1) and G-(q-1) respectively, as 

in Fig.1.  

The key modeling idea for combining both models is 

depicted in Fig. 3, where the discrete control signal 

u(t) being applied to a process can always be 

considered as the sum of two sequences u+(t) and u-

(t), that have only increasing or decreasing changes 

correspondingly.  

Every positive or negative change in u(t) at a 

sampling time, is translated into the same change in 

u+(t) or u-(t) with the condition that they can not take 

place simultaneously. In this way, the moves in the 

control signal can be written as: 
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Now the model output can be formulated as: 
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where v(t) represents a non-stationary stochastic 

disturbance, or alternatively as: 
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where  = 1–q-1, A, B+, B-, T are polynomials in the 

backward operator q-1, (t) is a zero-mean white 

noise signal and u+, u- are constrained by (1). 
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Fig. 3 Signal u(t) decomposed as u+(t) and u-(t)

IFAC - 360 - ADCHEM 2006



     

3. MPC CONTROLLER 

Model (3), even if constrained by (1), has a nice 

structure that allows us to formulate closed 

expressions for the predictions of the process 

outputs. Taking into account that (1) refers only to 

the inputs,  we can apply the superposition principle 

with our model (3) and develop prediction equations 

in the usual way in linear MPC. 

Future values of the output at times t+j, (j=1,…,N2

sampling periods) can be considered as the sum of 

two terms: the so called free and forced responses: 
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where the free response corresponds to: 
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and u+
f and u-

f can be computed according to: 
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so they are known variables at time t. Then, the 

predictions are obtained using the usual procedures, 

either based on filters or in Diophantic equations. As 

they are well known, they will not be repeated here. 

See for instance (Clarke, 1987).  

On the other hand, the forced response can be 

computed using: 
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with gj being the step response coefficients of each 

transfer functions and 
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Once output predictions are available, the optimal 

control actions of our MPC controller can be 

obtained as the ones that minimize a cost function (9) 

of the squared errors between these predictions and a 

desired set point, including a penalty on the control 

moves, along a given time horizon: 
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Notice that (1) allow us to write the equivalent 

problem: 
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where we take advantage of the cost function 

structure that allows different weighting of the 

positive and negative moves. 

Defining the matrices: 
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and the vectors: 
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where 
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it is possible to reformulate I(t) as a quadratic 

function that the controller solves: 
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and the constraints (1) every sampling time. Due to 

constraint
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0)()( jtujtu ,              (22) 

a non-linear programming problem with 2Nu decision 

variables, a quadratic cost function and the linear 

constraints (8) has to be solved. Notice that adding 

additional constraints on the manipulated and 

controlled variables, or on their speed of change, this 

assertion does not modify. 
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where Ux, Dx, Lx, refers to the low and upper limits of 

these variables. 

As such, it must be solved with an appropriate NLP 

solver. The fact that the cost function, with adequate 

values of , is convex and the most of the equations 

are linear, can help in finding the optimal solution, 

but there is no way to avoid the non-convex 

constraint (22). 

4. A HYBRID PREDICTIVE CONTROL 

ALTERNATIVE 

Because of this difficulty, an alternative solution to 

the problem described by (1), (18), (23)-(25) is 

proposed, in the form of a hybrid MPC problem. 

With this purpose, we have introduced Nu new binary 

variables zj,  j = 1,…, Nu-1. It is not difficult to 

realize that the set of constraints (1) is equivalent to 
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where D is a large positive number and the variable 

zj has 0/1 value. Notice that zj =1 means that a 

positive change will be implemented at time instant 

t+j and zj = 0 means that a negative change will be 

the one implemented at that time instant. 

The interest of substituting the set of constraints (1) 

by (26) is that, even if new binary variables zj are 

introduced, the set (26) is a linear one, eliminating 

the non-convex equations (22), which facilitates the 

finding of the optimal control moves. 

Now, the associated controller optimization problem 

can be formulated as an MIQP problem considering 

the cost index (18), the definitions (19)-(21) and the 

constraints (26). The optimization problem is solved 

every sampling period, for which efficient algorithms 

as Branch & Bound can be found. 

5. APPLICATION EXAMPLE 

In order to test the proposed method, an asymmetric 

process like the one depicted in Fig. 4 was 

considered. The two dynamics have been identified 

and the corresponding transfer functions are given 

by: 

15
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with the step responses like the ones shown in Fig. 5 

and 6. 

Fig. 5. Step response of G+(s) 

Fig. 6. Step response of G-(s) 

The proposed hybrid controller was applied to this 

asymmetric process and a series of experiments were 

performed.  

The controller had the following parameters: N1 = 1, 

N2 = 15, Nu = 2, and, initially, the same control 

weights 1 = 0.1, 2 = 0.1, were applied to each 

positive or negative movements of the control 

variable u. The experiments consist of several step 

changes in the set point of the controller. Fig. 7 

shows the process response and the set point in the 

lower graph as well as the control signal in the upper 

one. As we can see it behaves very well following 

the reference and with sensible control efforts. 
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G+, G-
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y

G+ G-

Process

G+, G-
u

y

G+ G-

Fig. 4 Asymmetric process of our example 

IFAC - 362 - ADCHEM 2006



     

Fig. 7. Closed loop response of the asymmetric 

process to several step changes in the set point. 

Upper graph: control signal. Lower graph: set 

point and process output. 

A more symmetric process response can be obtained 

weighting the control moves differently. For 

instance, with 1 = 0.1, 2 = 10, it is possible to 

obtain the response of Fig. 8. 

Additional constraints in both inputs and outputs can 

be added easily. Fig. 9 and 10 show responses of the 

process when the control signal was constraint to be 

in the range [-1, 0.7] (Fig. 9.) and the process output 

was constraint also to be in the range  [-1, 1] (Fig. 

10). Notice that the set point is outside this range. 

In order to test the advantages of the proposed 

controller, it was compared with a linear MPC using 

a fix internal model. Fig. 11 shows the case where 

the internal model is given by G+(s) with the same 

tuning parameters as in the hybrid controller. As we 

can see, the response is very poor, with high control 

moves and oscillatory process output. This response 

can be improved by tuning of the control weights, 

compromising between the positive and negative 

responses. For instance, with  = 5, it is possible to 

obtain the responses of Fig. 12, which is still not very 

good. 

Fig. 8. Closed loop response of the asymmetric 

process to several step changes in the set point 

with different weights. Upper graph: control 

signal. Lower graph: set point and process output. 

Fig. 9. Closed loop response of the asymmetric 

process to several step changes in the set point. 

Limits on u. Upper graph: control signal. Lower 

graph: set point and process output. 

In the same way, Fig. 13 shows the case where the 

internal model is given by G-(s) with the same tuning 

parameters as in the hybrid controller. Similar 

conclusions can be obtained. Moreover the 

computation time for the whole experiment is only a 

bit smaller (0.313 seconds) than the case of the 

hybrid control (0.344 seconds). The both experiments 

were computed in a Pentium 2.53 GHz and 524 kB 

RAM.

As a final test, we compared the hybrid and the non-

linear MPC model. The responses were very similar 

to the ones of Fig. 7, but the computation time was 

almost five times faster in the case of the hybrid 

controller and moreover the guarantee of optimality 

is given by the fact that the hybrid problem is 

convex. 

For save of simplicity, no terminal penalty term has 

been added to the cost functions but it could be easily 

included in order to stabilize the closed system. 

Fig. 10.  Closed loop response of the asymmetric 

process to several step changes in the set point. 

Limits on u and y. Upper graph: control signal. 

Lower graph: set point and process output. 
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Fig. 11. Closed loop response of the asymmetric 

process to several step changes in the set point. 

Internal model G+. Upper graph: control signal. 

Lower graph: set point and process output. 

Fig. 12. Closed loop response of the asymmetric 

process to several step changes in the set point. 

Internal model G+ and  = 5. Upper graph: 

control signal. Lower graph: set point and process 

output. 

Fig. 13. Closed loop response of the asymmetric 

process to several step changes in the set point. 

Internal model G- ,  = 0.1. Upper graph: control 

signal. Lower graph: set point and process output. 

6. CONCLUSIONS 

In this paper two alternative formulations for a MPC 

algorithm to deal with asymmetrical processes are 

presented instead of using a full non linear model 

strategy. Both algorithms take advantage of the use 

of two linear internal models and a quadratic cost 

function in spite of the non linearity of the process. 

The first proposed method involves NLP because of 

the constraints and the second one has the form of a 

hybrid MPC problem with only linear constraints, 

some of them including binary variables, leading to a 

MIQP problem. 

Simulations using an example of a process with 

severe asymmetry were performed. Comparing with 

a linear MPC using a fix internal model, the new 

controllers show a better performance and an 

important advantage raises with the hybrid one where 

the computation time is similar to a classic linear 

MPC.
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