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Abstract: Discrete wavelet transform (DWT) is known for its signal processing ability. In
the recent researches, DWT is adopted for signal filtering before executing dynamic data

reconciliation. While on-line dynamic data reconciliation is concerned, the computation is

heavy duo to the filtering in every time instant. In this article, a shift property of the DWT

is indicated and is applied to reduce the computation duty. The efficiency of this

application is also discussed. Copyright © 2006 IFAC
 
Keywords: filtering technique, data processing, dicsrete wavelets transform, integral

method
 
 
 
 

 

1. INTRODUCTION1

Data reconciliation can be used to reduce the

measurement errors which come from imperfect

instrument measurements. In this way, the

adjusted data obey the natural laws.

Measurement redundancies, which include

functional and temporal redundancy, are the
first important consideration in processing data

reconciliation. Measurements are functionally

redundant if there are more than enough data to

completely define the process model at any

time instant in time. Measurements are

temporally redundant if past measurements are

available to reconcile the measurements. Then

the data reconciliation problem is defined as a
constrained, weighted, least-squares

optimization problem.

The steady-state data reconciliation is well-

documented (Narasimhan and Jordache, 2000;

Romagnoli and Sanchez, 2000) and have

applications in industrial processes (Crowe,

1996). However, dynamic data reconciliation is
better to deal with this kind of problem in the
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real conditions.The formulation of the dynamic

data reconciliation can be written in Eqs. (1)-(4).
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Where, φ is the objective function,
1

g is the

differential equation constraint,
2

g is the algebraic

equality constraint,
3

g is the inequality constraint,

y is the measurement variable, ŷ is the reconciled

variable and Σ is the covariance matrix. A general
data reconciliation problem is thus formulated as

minimizing an object function of Eq. (1) subjected to

equality and inequality constraints of Eqs. (2)-(4).

There have been different kinds of solutions to the

optimization problems. The discretization-based

methods solve the problems by transforming the

differential equations into algebraic equations
(Liebman et al., 1992; Rollins and Devanathan, 1993;

Albuquerque and Biegler, 1996). But discretization

increases the number of variables and equations,

which increase the computation effort, and is

impractical for applications in the real process.

Dynamic data reconciliation methods by pre-treating

the variables with wavelets analysis are also

proposed (Kong et al., 2000; Luo and Huang, 2005;
Tona et al., 2005).
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If these methods are used in the on-line application,

the algorithms need to be executed in every time

instant which leads to a lot of computation duties. In

this article, an integral approach method for dynamic
data reconciliation with wavelets pre-treatment of the

measurement signals is proposed. A shift property of

the discrete wavelet transform (DWT) is also

addressed. Based on this property, a method is

proposed which can reduce the computation duties of

the traditional DWT. The analysis of the efficiencies

is also discussed. Finally, a four-tank process is taken

to testify the proposed method.

2. FILTERING BY WAVELETS

Wavelets are families of mathematical functions,

which have been applied widely for signal and image

processing. Wavelets theories are introduced friendly

in the text book (Burrus et al., 1998) and some
simple application examples are illustrated in the

Matlab� user guide for wavelet toolbox (Misiti et al.,

1997). In practice, the wavelets analysis is
accomplished by discrete wavelet transform (DWT),

whose algorithm is well matched to the digital

computer. The DWT is commonly employed using

dyadic filter banks, which are sets of filters that

divide a signal frequency band into sub-bands. These

filter banks are comprised of low-pass, high-pass

filters and the outputs are the approximation

coefficients and the detail coefficients. The process
of obtaining the approximation and detail

coefficients is called decomposition. This process

can be repeated with successive approximations (the

output of the low-pass filter in the first bank) being

decomposed in turn, called multilevel decomposition,

so that one signal is broken down into a number of

components. The inverse discrete wavelet transform

(IDWT) reconstructs a signal from the approximation
and detail coefficients derived from decomposition at

certain level. And the filtering is accomplished by

omitting the detail coefficients at the proper

decomposition level (Luo and Huang, 2005). The

details of the proposed are described in the following

article.

2.1 Moving-Horizon Filtering

As carrying out data reconciliation on-line, the

filtering is repeated at every time instant with a finite

length. The choices of the wavelets and the length of

the moving-horizon are discussed in the following

part of this section.

2.2 Shift Property of DWT

Ιn mathematics, the DWT decomposition includes
two procedures: 1. convolution, 2. down-sampling.

The two procedures can be expressed by Eq. (5)

(Jensen and Cour-Harbo, 2001).

0 0 0[ ] [2 ] [ ] [ ] [2 ]
f f

c k h k f X f h f X k f= − = −∑ ∑ (5)

0
C is the ‘approximate’ coefficient,

0
h is the low

pass filter, f is the length of the filter and X is the

original signal. The procedure is shown in the Figure

1 and constant padding is used to solve the problems

of end distortion. In order to simplify the condition,

n is set to be even. And assuming that the previous

moving-horizon,
1

X , is represented by Eq. (6) and

the instant moving-horizon,
2

X , is represented by Eq.

(7).

1 1 2
[ ]

n
X x x x= � (6)

2 3 4 2
[ ]

n
X x x x += � (7)

According to the Eq. (5), as the moving-horizon

moving by two points at a time, some coefficients of

this window are identical with some coefficients of

the previous window. So the DWT decomposition

can be executed by just calculating some coefficients

on two sides and shifting some coefficients of the
previous window. Precisely, the shift relation can be

expressed as Eq. (8).

i/2 (i+2)/2
c c=� (8)

c� is the coefficient of the present moving-horizon

and c is the coefficient of the previous moving-

horizon. The corrected terms of both sides are
calculated by Eqs. (9) and (10). In this manner, the

DWT procedure is accomplished in another way but

the computation is saved.
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2.3 Applying the Shift Property to Multilevel DWT
Decomposition

The shift property described in the previous article

can be revealed in the multilevel decomposition if the

following two conditions are held.

1. The length of the coefficients of different levels
must be even (identical to the original

assumption).

2. The coefficients must be moved by two points

compared with the previous moving-horizon.

Duo to the first reason, as processing multilevel

DWT decomposition, the length of the moving-

horizon must be with a specific length according the

types of the wavelets. In order words, there are
specific lengths of the chosen wavelets to satisfy this

condition. Some specific lengths of the Daubechies

wavelets are listed in Table 1. For example, if five-

level DWT decomposition is desired, the smallest

length of the moving-horizon will be the number at

the column No. 5 at Table 1 to make sure the length

of different level to be even.

The second condition is that coefficients at the

different DWT decomposition level must be moved

by two points compared with the certain previous

moving-horizon.

A phenomenon of DWT is described firstly.

From Eq. (8) (disregard the corrected terms), it is

known that the 1st level coefficients are shifted by
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one point if the 0th level coefficients (i.e., original

signal) are moved by two points. The 2nd level

coefficients are shifted by one point if the 1st level

coefficients are moved by two points or the 0th

coefficients are moved by four points. In this manner,

the shift property holds at level m if the original

moving-horizon is moved by 2m points, which

restricts the application for on-line filtering that

needs to execute at every time instant (if m level

DWT decomposition is desired). But this can be

solved by setting a dataset containing the information

of different levels coefficients shown in the Figure 3.
In Figure 3, the moving-horizon is represented by a

solid line. The moving-horizon in the time instant is

the line on the rightest. The size of dataset is

determined by the chosen DWT level. If the desired

multilevel DWT is m , then 2m moving-horizons

need to be built. Furthermore, the first level

coefficients can be obtained by calculation from the

current moving-horizon and shifting some

coefficients from the first level coefficients of the

previous two moving-horizons. The second level

coefficients can be obtained by calculation from the

current first level coefficients and shifting some
coefficients from the second level coefficients of the

previous four moving-horizon. And the corrected

terms at each level are listed in Table 2. In this

manner, the on-line filtering by DWT using shift

property can be executed at each time instant. In

Figure 1, which illustrate just one of the moving-

horizon in the test signals, the results are identical

between direct DWT decomposition and proposed
method. (In the following examples, wavelets

Daubechies 6 is adopted and the length f is equal

to 12.)

Table 1 Specific length of different Daubechies

wavelets

wavelets
Filter

length
1 2 3 4 5 6 7

db02 4 4 6 10 18 34 66 130 …

db04 8 8 10 14 22 38 70 134 …

db06 12 12 14 18 26 42 74 138 …

db08 16 16 18 22 30 46 78 142 …

db10 20 20 22 26 34 50 82 146 …

db12 24 24 26 30 38 54 86 150 …

db14 28 28 30 34 42 58 90 154 …

db16 32 32 34 38 46 62 94 158 …

db18 36 36 38 42 50 66 98 162 …

db20 40 40 42 46 54 70 102 166 …

2.4 Modified Application

The shift property can save the computations

compared with the original DWT algorithm. In order
to obtain larger computation efficiency, a modified

application is also proposed.

As on-line application, not all of the data in filtered

signal in the moving-horizon is needed. Filtered data

near the time instant is desired in the application, so

the correction action on the right side is executed and

the right side result of reconstruction is consistent

with the right side result of the direct IDWT. The

number of the identical data depends on which level
is chosen. The larger chosen level leads to less

identical terms. Further, as reconstruction, it can just

focus on the desired terms. Not all of the filtered data

needs to be reconstructed. It can reconstruct the data

with certain points at each level. For example, if the

last 12 terms of the filtered data are needed, then the

reconstruction at each level can be set to 12 terms to

obtain the final 12 terms. In this way, the
computation is saved more.

Fig. 1. on-line filtering application

Table 2 Corrected terms at each level

level Left side Right side

1 (f-2)/2  (l1) f/2  (r1)

2 floor{(l1+f-1)/2}(l2) ceil{(r1+1)/2}+floor{(f-1)/2}(r2)

3 floor{(l2+f-1)/2}(l3) ceil{(r2+1)/2}+floor{(f-1)/2}(r3)

4 … …

*“floor” rounds the elements of X to the nearest integers
towards minus infinity.
*“ceil” rounds the elements of X to the nearest integers
towards infinity.

2.5 Determination of DWT Level

Determination of the DWT level is accomplished by
the method proposed by Luo and Huang (2005).

From DWT and IDWT procedure, the signal is

decomposed into various parts, i.e., high frequency

(detail) and low frequency (approximate) part. Like

shown in Figure 2, iA is the approximate of the

signal and iD is the detail of the signal. The relation

between iA and iD is expressed in Eq. (11).

i i+1 i+1A A D= + (11)

The square errors of iD , i.e. the energy of the detail

part, represent the removed energy after

decomposition at the level i. The energy of iD

should be decreases as i increases duo to the

narrower band-pass region. If the energy of iD

increases suddenly at certain level, which means

some dominated low frequency signal is filtered, then

the decomposition level is determined at the previous

level.
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Fig. 2. DWT analysis and IDWT synthesis

2.6 The Efficiency Analysis

In this section, the efficiency is discussed. In order to

discuss the efficiency of the proposed algorithm, it is

assumed that a convolution calculation is viewed as a

computation unit. For traditional DWT, the

computation unit of different level can be calculated

by Eq. (12) which means the length after convolution.

And
1

s can be the length of the signal or coefficients

at different level. The coefficient at different level

can be calculated by Eq. (13).
2

s is the length of the

coefficients of the previous level.

1
1s f+ − (12)

2
( 2) / 2s f+ − (13)

If the length of the signal is n and the length of the

filter is f , then the convolution leads to a signal

with length equal to 1n f+ − . After down-sampling,

the length of 1st level coefficients is equal to

( )2 / 2n f+ − . In Table 3, the computation units of

direct DWT are listed. As IDWT reconstruction, the
procedure includes firstly up-sampling and then

convolution. The computation unit can be calculated

by Eq. (14) which means the length after convolution

the up-sampling sequences, where
3

s is the length of

the signal or coefficient at different level and the
results are listed in Table 4.

3
(2* 1) 1s f− + − (14)

For the DWT decomposition of the proposed

modified method, the computation unit of different

level is the same and is equal to the corrected terms

at the right side, / 2f . For IDWT reconstruction, the

computation unit is also calculated by Eq. (14) but

3
s keeps constant at the different level and usually

3
s is set to the length of the coefficients at the

desired level. While application, two points are

considered: 1. length of the moving-horizon, 2.

selection of the filter.

Selection of the filter Different wavelets show

different filter bands in the frequency domain but the

differences are quite small. The mean square errors

for the reconstruction signals, which have the same

original signal with random noises of fixed standard

deviation, from different level of different

Daubechies wavelets are plotted in the Figure 3.
From the figure, it tells that the performances are

almost the same except the first two wavelets. So it

can select the wavelets freely after Daubechies 6, but

it does matters if the efficiency is considered.
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Fig. 3. The mean square errors after different level

IDWT reconstruction for different

Daubechies wavelets

Table 3 The computation units of direct DWT

DWT decomposition Computation unit

0-th level to 1st level 1n f+ −

1st level to 2nd level ( 3 4) / 2n f+ −

2nd level to 3rd level ( 7 7) / 4n f+ −

3rd level to 4th level ( 15 22) /8n f+ −

… …

Table 4 The computation units of direct IDWT

IDWT reconstruction Computation unit

… …

4th level to 3rd level ( 23 46) / 8n f+ −

3rd level to 2nd level ( 11 22) / 4n f+ −

2nd level to 1st level ( 5 10) / 2n f+ −

1st level to 0th level 2 4n f+ −

Length of the moving-horizon According to Table 3

and Table 4, assuming that four-level of DWT

decomposition is chosen, then the total computation

units of direct DWT is equal to (15 65 114) 4n f+ − .

For the proposed method, the total computation units

is (15 97 162) 8n f+ − (
3

s in Eq. (14) is equal the

length of the 4th level coefficients). Then the

efficiencies of different Daubechies wavelets with

corresponding lengths in the Table 2 are calculated
and the results are listed in Table 5. If the

computation units are normalized, then the

efficiencies are shown as Figure 4. It can see from

the figure that at certain length there exist the best

benefits.

3. INTEGRAL APPROACH RECONCILIATION

Applying the integral approach reconciliation method

(Luo and Huang, 2005) to the filtered signal, the

algorithms are described briefly in the following

article.
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Table 5 Efficiencies of different length of the moving

horizon respect to different Daubechies wavelets

5 6 7 8

db02 0.5738 0.6703 0.7483 0.8007

db04 0.5062 0.6036 0.6959 0.7663

db06 0.4653 0.5573 0.6545 0.7363

db08 0.438 0.5232 0.6209 0.71

db10 0.4184 0.4971 0.5931 0.6866

db12 0.4037 0.4764 0.5697 0.6658

db14 0.3923 0.4597 0.5498 0.6471

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6
x10

-3

db02

db04

db06
db08

db10

db12

db14

Fig. 4. Efficiencies with normalized computation

units

By integrating differential-algebraic (DAE)

equations of a linear dynamic system between some

time
0

t and nt , we can get the following algebraic

Equations (i.e. Eqs. (15) and (16)). h is the vector of
state variables, f is the vector of non-state variables,

A and C are constant matrices from the algebraic part

of the DAE.

n n

0 0

d
d

d

t th
dt A f t

tt t
=∫ ∫ (15)

n

0

d 0
t

C f t
t

=∫ (16)

Let n n

0 0
1 2

d
d

d
d

,
ht t

Z t Z f tt tt
= =∫ ∫ , and we can

rearrange the integrations and get the following

matrix form in Eq. (17).

2

1

-
0

0

ZA I

ZC

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
= (17)

It shows that the result is an algebraic constraint. In

the following, the reconciliation procedure is to

incorporate the integrating part by Simpson’s rule for

numerical integration. Then the algebraic equations

can be expressed as Eqs. (18) and (19).

1 1 *Z Q F= (18)

2 2 *Z Q H= (19)

Define new variable H and F which represent the

collections of all measurements of all instruments

during the integrating time interval t0 to tn. Finally,
we obtain the algebraic constraint equation (Eq. 20)

represented by H and F from the original DAE.

0- 1
0

0 0
2

QA I F

C Q H

⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
(20)

With the equality constraint, the reconciliation
problem can be solved. As on-line reconciliation,

one reconciled point is obtained in one moving-

horizon.

1
f 2

f

3
f4

f

5
f

6
f

1
q

4
q

3
q

2
q

Reservoir

1 2

3 4

Fig. 5 A four-tank system

4. EXAMPLE

A four-tank system shown in Figure 5 is illustrated as

an example. The differential algebraic equation of
this example is showed in Eq. (21). There are two

main flows f5, f6 split into two branches apiece. The

four branches, f1, f2, f3, f4, flow into four tanks

respectively. Each tank has flow, q1, q2, q3, q4, out of

it. The flow out of tank 3 is fed into tank 1 and the

one out of tank 4 is fed into tank 2. Parameters of the

process are listed in Table 6. From the analysis in

section 2, wavelets “Daubechies 6” is selected and
the moving-horizon is 74.The results are shown in

Figures (6)-(8).
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4

1
1 1 3 1

2
2 4 2

3
3 3

4
4 4

5 1 4

6 2 3

d

d

d

d

d

d

d

d

-
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-

-

f f f

f f f

h
A r q q f

t
h

A r q q f
t

h
A r q f

t
h

A r q f
t

= +

= +

= + +

= + +

= +

= +

(21)
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CONCLUSIONS

In this research, the wavelet filtering is used to apply

in the on-line dynamic data reconciliation. In the
theory, the shift property of the DWT is the basic

idea to establish the method whose main purpose is

to save the DWT computation efforts. A modified

method is actually being applied which can save

more computation efforts. The efficiencies of

different Daubechies wavelets are discussed in order

to decide the best performance match-up. The

reconciliation performances are good.
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Fig. 7 Reconciled result of
1

h

Table 6 Parameters of the four-tank system
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Symbol State/Parameter Value Dimension

h0 Nominal levels
[20.4; 20.4;

11.5; 11.5]
cm

ai Area of the drain [3; 3; 2 ;2] cm2

Ari Area of tank i 1000 cm2

fi flow into the tank i
[0.3; 0.3; 0.3;

0.3; 0.6; 0.6]
cm3/S

Ti Time constants
[68; 68;

76.5; 76.5]
S

g Gravitation constant 981 cm/S2

σf

Standard deviation

of flow
0.015 cm3/S

σh

Standard deviation

of level
0.6 cm
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