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Abstract: The proposed MPC is based on a successive linearization of the model at each 

sampling time and a formulation of a MPC. The cost function of the MPC problem is 

subject to a reference system as equality constraint and to upper and lower limits in the 

input variables. In order to satisfy both constraints simultaneously it is needed to include 

a slack variable in the equality constraint. This slack variable provides more flexibility in 

the control moves so that the solution of the optimization problem becomes feasible. 

Proposed controller was implemented to an experimental neutralization pH plant. Results 

showed a very satisfactory performance of the proposed strategy. Copyright © 2006 
IFAC
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1. INTRODUCTION 

Process control is concerned to application of 

automatic control principles for industrial processes. 

The effect of the global competition in industries has 

caused the perception of the importance of the 

product quality in the profitability. Because of this 

control strategies are used to assure a satisfactory 

product quality and to decrease raw and energy cost. 

However, even though the vast majority of chemical 

processes are inherently nonlinear, these processes 

have been controlled by linear controllers. The 

advantage of this approach is that an easy analytical 

solution of control problem can be found and a low 

computational effort is demanded by them. However, 

the linear approach can be very limiting for highly 

nonlinear processes and it can lead to unstable 

solution. The use of nonlinear process models within 

the control strategy has been shown to provide the 

potential for significant improvement over linear 

controllers for nonlinear processes (Bequette, 1991; 

Henson and Seborg, 1997). Nonlinear model 

predictive control (NMPC) (Garcia and Morshedi, 

1986; Garcia et al., 1989; Gattu and Zafiriou, 1992) 

and input-output linearizing control (IOLC) are the 

most widely studied nonlinear control techniques for 

process control problems. NMPC offers many of the 

appealing features of linear model predictive control, 

including explicit compensation for input and output 

constraints (Meadows et al., 1995). As compared to 

NMPC, IOLC offers several important advantages 

including transparent controller tuning and low 

computational requirements (Kravaris and Kantor, 

1990). However, conventional feedback linearization 

techniques have neither constraint handling 

(Rawlings et al., 1994) nor predictive capabilities. 

This has motivated the development of several 

modifications of the basic input-output linearization 

approach (Balchen and Sandrib, 1995; Kendi and 

Doyle, 1995). 

On the other hand, the nonlinear approach can result 

in a large computational effort what turn its use is 

limited for practical applications. The aim of this 

work is to present a nonlinear control technique 

which is computationally feasible for industrial 

implementation. The proposed strategy is a predictive 

control technique (MPC) based on a successive 

linearization of the model via Taylor’s series 

expansion at each sampling time. The cost function of 

the optimization problem is subject to a first order 

reference system as a constraint together with upper 

and lower limits in the inputs. In order to satisfy both 

constraints simultaneously and to provide a feasible 

solution, it is necessary to include a slack variable ( )

in the cost function of the optimization problem. The 

advantage of the proposed algorithm is that it does 

not need be re-tuned for different operating points. 

An experimental study was carried out in a pH 

neutralization plant. 

2. THE DYNAMIC SYSTEM 

Consider a general dynamic system described by: 

xhyux,f
x
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Where u n is the vector of manipulated variables, 

x
m is the state vector and y n is the output 

vector. Linearizing Eq. (1) via Taylor’s series 

expansion around the point immediately earlier to the 

current point of operation, the following equation is 

obtained: 

1-k1-k1-k1-k1-kdt

d
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Eq.(2) is integrated from t to t+ t assuming u(k) 

constant during sampling instant: 

1k(k)(k)ˆ
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Where m m, m n, m m are: 
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Since A is nonsingular. Eq.(3) can be written for each 

prediction instant from k = 1 to k = P where P is a 

prediction horizon and M control horizon with P  M 

and u(k + j) = 0 to M < j  P. The resulting set of 

equations can be put in a matrix form: 

uŷ      (4) 
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2.1 The Reference System 

The controller is designed in order to transform the 

closed loop system in a first order system: 

yyK
y SP

dt

*d
         (5) 

Where K
n n is tuning parameter, y

SP are the 

setpoints and y* are the reference output trajectories. 

The controller must satisfy the following reference 

system: 

dt

*
d

dt

d yy
  (6) 

Infeasible solutions of the MPC optimization problem 

can occur when equality constraints represented by 

Eq.(6) and hard constraints (upper and lower bounds 

for inputs) must be satisfied simultaneously. To 

overcome this problem, a slack variable ( ) is 

introduced into Eq.(6) in order to allow the system to 

deviate from reference system and to satisfy the hard 

constraints. Therefore, introducing slack variable 
n into Eq. (6) and substituting Eq. (2) into Eq. (6) 

we obtain: 

(k)(k)(k)(k)1-k(k)1-k1-k
SP

yyKuBCxACfC

(7) 

Eq. (7) can be written for each prediction instant and 

it can be put in a matrix form: 

bzD   (8) 
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2.2 The proposed MPC Design 

The cost function of the MPC problem is defined as: 
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and also reorganized as a cost function of a quadratic 

programming problem: 
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Where z is given by Eq.(9) and matrix H
(P+M+2) (P+M+2) is: 

S0
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Borges (2001) showed the proposed controller as 

presented here can not eliminate offset. Borges (2001) 

unless that the following change in Eq. (8) is made: 

t

1kk
1k
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Where yk and yk-1 are the system outputs at kth and (k-

1)th sampling instants respectively. Both vectors are 

available at kth sampling instant. 

2.3 The MPC design 

A classical MPC is designed in order to compare 

results. The following classical MPC is defined: 
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Where e represents the setpoint deviation vector and 

it is given by 'eue  where )(' SP
ye . The 

optimization problem represented by Eq. (13) can 

also be put as a quadratic programming problem. 

3. EXPERIMENTAL APPLICATION 

3.1 The system 

Consider a neutralization process that occurs in the 

CSTR shown in Fig.1. The system involves the 

dynamic behavior of pH and contains two inputs, an 

acid stream (HNO3), Q1, a base stream (NaOH), Q2,

and a single output, pH. The liquid level is constant 

and the chemical reactions involved are:  

FT FT

HNO3 1(Q ) NaOH (Q )2

pHT

Wa1 3 0 = [HNO ] Wa2 0= [NaOH]-

W  = [NO ]-[Na ]a 3

- +

Fig. 1. Experimental setup 
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             (14) 

The dynamic of the process is given by the following 

physical model (Montandon, 2005): 

)WW(Q)WW(Q
dt

)W(d
V a2a2a1a1

a   (15) 

aa W)0(W   (16) 

where ]Na[]NO[W 3a  is a reaction invariant 

because it is not affect by extension of the reaction. 

Eq.(16) represents initial condition for the reactor: 
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Wa(t) can be obtained by integrating of Eq.(15), [H+]

is obtained by substituting Wa(t) into Eq.(18) and 

pH(t) is obtained by substituting [H+] into Eq. (19): 

]H[

K
]H[W W

a           (18) 

]Hlog[pH       (19) 

Table 1 gives the nominal values of system 

parameters. This system is interesting from control 

point of view because it is strongly nonlinear as it can 

be seen in Fig. 2. 

Table 1. Nominal values of the system parameters. 

Variable Symbol Nominal values 

Volume V 4459,94 cm3 

Acid flowrate Q1 12,0 mL/s 

Base flowrate Q2 12,0 mL/s 

pH pH 7,0 

Acid conc. in Q1 [HNO3]0 3,611e-03 M 

Base conc. in Q2 [NaOH]0 3,611e-03 M 

Wa in Q1 Wa1 3,611e-03 M 

Wa in Q2 Wa2 -3,611e-03 M 

Wa in output Wa 0,0 
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Fig. 2. Experimental Titration curve. 

3.2 The neural network model 

The problem of using physical model is that it can be 

quite difficult to get or insufficiently accurate to be 

used in a MPC. In addition, input/output data are 

generally available in industrial application. To take 

advantage of this fact, it was developed a version of 

proposed controlled based on a neural network 

models. Before introducing NN models, it is 

convenient to discuss some practical aspects of the 

representation of these types of dynamic systems. The 

natural way to represent the dynamic system 

represented by Eq. 1 is to use neural networks with 

neurons with dynamic characteristics (You and 

Nikolaou, l993). This approach has the advantage of 

producing models of small dimension. For a single 

input single output system (SISO), the resulting 

neural network will have only one input. The main 

disadvantage of these types of neural networks is the 

training phase. It is very time consuming and hard to 

converge. A popular alternative is to consider a neural 

network with static neurons representing a discrete 

approximation of the dynamic system in the form of a 

NARX model (Su et al, l992). In this case, the main 

advantage is associated with the simplicity of the 

training phase. The disadvantage is that the number of 

required network inputs increases with input and 

output lags causing a huge increase in network 

structure. Another problem is that the determination 

of the input and output lags requires very often a 

tedious iterative process. For these reasons, in this 

work we consider a different alternative that consists 

of the direct representation of Eq.(1) with a static 

neural network followed by a numerical integration to 

recover y(t+1).  

Q ( t )
2

p H (t )

+ 1

d p H ( t )

d t

+ 1

Fig. 3. Neural network topology used. 

The Fig. 3 shows the neural network topology 

schematically. If the value of y(t) from plant is used 

as initial condition for obtaining y(t+1) by integration 

then an one step ahead prediction is obtained, but if 

the value of y(t) is obtained from previous integration 

step then a multiple step ahead prediction is obtained. 

For pH neutralization process, the FNN model 

predicts the time derivatives of pH as a function of 

the base flow rate and the system pH. The system was 

excited using a random uniform step sequence for 

base flow rate Q2 with a step probability (probability 

of a step change occurring at any given sampling 

instant) equal to 0.8 (Bomberger and Seborg, 1997). 

Q1 was kept constant in its nominal value. Fig. 4 

shows the experimental input and output and the one 

step ahead prediction performed by the neural model. 

A sampling period of 10s was used. Data from the 

time interval [0 to 256 min] were used to the FNN 

training phase and from the interval [256 to 400 min] 

to the validation phase. The network inputs were 

Q3(t), pH(t) and the network output was d[pH(t)]/dt. 

The derivatives of pH were calculated numerically by 

finite difference schemes of filtered pH values. After 

a cross validation procedure a neural network with 

five nonlinear hidden neurons (hyperbolic tangent 

activation function) and one linear output neuron was 

selected and trained until convergence using the 

Levenberg-Marquardt method. 
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Fig. 4. Experimental data: a). Input sequence for Q2.

b). System output and one step ahead NN 

prediction. c). Modelling error using NN model. 

Fig. 4 shows the data used for training and validation 

phases and the NN prediction. Prediction results by 

using physical model were not accurate and this 
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model was not used in MPC calculation. These results 

were not shown here to save space. In order to 

illustrate the advantage of proposed technique over 

classical PID and MPC technique, a digital PID and a 

constrained predictive controller (Eq. 13) were 

implemented experimentally and compared to the 

proposed controller (Eq. 11) for servo and regulator 

problems (unmeasured perturbation). All controllers 

were first tuned by simulation tests using the NN 

model to represent the real system. In following field 

tuning were performed for three controllers using 

preliminary parameters in order to get the best 

controller parameters experimentally adjusted. The 

tuned PID parameters are t = 10 s, Kc = 0.5 s/mL, I

= 90 s and D = 0 s. For classical MPC the tuned 

parameters are t = 10 s, M = 10, P = 20, Q = 1, R = 

150, | Q3 max| = 1 mL/s, Q3 max = 30 mL/s and Q3 min = 

5 mL/s. For proposed MPC the tuned parameters are 

t = 10 s, K=5e-03 s-1, M = 10, P = 20, R = 1, S = 

100, | Q3 max| = 1 mL/s, Q3 max = 30 mL/s, Q3 min = 5 

mL/s. Fig. 5 and Fig. 6 show results of the controllers 

in servo problems. 
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Fig. 5. Closed loop responses for setpoint changes: a). 

PID, b). Classical MPC, c). Proposed MPC. 

Results from Fig. 5 reveal that the proposed MPC 

yielded a symmetric response for setpoint changes. 

This result is a consequence of the system reference 

put as an equality constraint in the quadratic 

programming of the control problem. As a 

consequence of this the closed loop response of the 

real system is basically a first order response. 

Therefore, controller re-tuning was not needed when 

new operation points are required. On the other hand, 

the Fig. 5 shows also that the PID and classical MPC 

performance are acceptable for system operation at 

low and high pH values, but the responses 

deteriorated considerably for system operation around 

of pH = 7. Consequently, a different set of the 

controller parameters must be required for good 

performance at different operational conditions. This 

is clearly not a desirable situation in any application 

since it greatly increases the maintenance needs of the 

controller. Fig. 6 shows the control actions for the 

three controllers. This Figure reveals that the PID 

yielded more aggressive control moves than MPC 

approaches. The more conservative control moves 

obtained by MPC approaches are because of the 

presence of hard constraints in the manipulated 

variable. 
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Fig. 6. Control actions: a). PID, b). Classical MPC, c). 

Proposed MPC. 

Next, the capacity of unmeasured perturbation 

rejection of the controllers was tested. Acid flowrate 

was chosen as system load and the controller 

parameters were kept the same for all controllers. The 

run was started with Q1 = 12 mL/s, it was changed to 

Q1 = 13.5 mL/s at instant t = 40 min, to Q1 = 12 mL/s 
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at instant t = 80 min, to Q1 = 10.5 mL/s at instant t = 

120 min and to Q1 = 12 mL/s at instant t = 160 min. 

After t = 160 min the acid flowrate was kept in its 

initial value Q1 = 12 mL/s. The initial condition of the 

system is pH =7. In this region the magnitude of the 

change in Q1 are too severe because of the high value 

of the system static gain. Fig. 7 shows the controller 

performances for load changes. 
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Fig. 7. Closed loop responses for load changes: a). 

PID, b). Classical MPC, c). Proposed MPC. 

Fig. 7 reveals that the PID controller yielded unstable 

response, very oscillatory with increasing amplitudes. 

The MPC approaches yielded stable and acceptable 

responses around of the operation point (pH = 7). 

These behaviors are remarkable because of the NN 

network was just trained to Q1 = 12 mL/s. Due to high 

sensitivity of the static gain of the system around of 

pH =7 (see Fig. 2) these changes in Q1 have a drastic 

impact in accuracy of the NN model. In spite of this 

the MPCs controlled the system in a stable fashion. 

The PID control moves were very aggressive and the 

MPC control moves were acceptable and no violation 

of the limits occurred. Results for control moves were 

not shown here because of slack of space. 

4. CONCLUSION 

This paper introduces a new MPC strategy based on a 

first order reference system. The proposed control 

algorithm was developed and implemented 

experimentally. Results of a pH neutralization process 

showed the proposed controller was clearly superior 

to PID and classical MPC for servo and regulator 

problem. The proposed method retains the 

computational simplicity while providing some 

desirable features from model predictive control, such 

as constraint handling, incorporating future setpoint 

changes, penalizing large control move increments by 

selecting appropriate weighting parameters in the 

objective function. It was also verified the proposed 

technique yielded promising results in a real control 

problem confirming its good potential for practical 

implementation due to low computational 

requirements, good closed loop performance as well 

as transparent controller tuning.  

REFERENCES

Balchen, J. G. and Sandrib, B. (1995). Input 

saturation in nonlinear multivariable processes 

resolved by nonlinear decoupling. Model. Ident. 
Control, Volume 16, 95-106. 

Bequette, B. W. (1991). Nonlinear Control of 

Chemical Process: A Review. Ind. Eng. Chem. 
Res, Volume 30, 1391-1413. 

Borges, R. M. (2001). Controle Preditivo Basedo em 

Sistema de Referência. M. Sc. Thesis.

Uberlandia, Brazil. (in Portuguese)
Garcia, C. E., Morshedi, A.M. (1986). Quadratic 

Programming Solution of Dynamic Matrix 

Control (QDMC). Chem. Engng.Commun,

Volume 46, 73-87. 

Garcia, C.E. , Prett, D.M. and Morari, M. (1989). 

Model Predictive Control – A Survey. 

Automatica Volume 25, 335-348.

Gattu, G. and Zafiriou, E. (1992). Nonlinear 

Quadratic Dynamic Matrix Control With State 

Estimation. Ind. and Eng. Chem. Res, Volume 

31, 1096-1104. 

Henson, M. A., Seborg, D. E.(1997). Nonlinear 
Process Control. Prentice Hall, New Jersey. 

Kendi, T. A. and Doyle, F. J.(1995). An anti-windup 

scheme for input-output linearization. Proc. 
European Control Conf., Rome, Italy. 

Kravaris, C. and Kantor, J. C. (1990). Geometric 

methods for nonlinear process control: 2. 

controller synthesis. Ind. Eng. Chem. Res., 

Volume 29, 2310-2323. 

Meadows, E. S., Henson M. A., Eaton, J. W. and 

Rawlings, J. B. (1995). Recending horizon 

control and discontinuous state feedback 

stabilization. Int. J. Control, Volume 62, 1217-

1229. 

Montandon, A. G. (2005). Controle Preditivo em 

Tempo Real com Trajetória de Referência 

Baseado em Modelo Neural para Reator de 

Neutralização. M. Sc. Thesis. Uberlandia, Brazil. 

(in Portuguese)
Rawlings, J. B., Meadows, E. S. and Muske, K. R. 

(1994). Nonlinear model predictive control: A 

tutorial and survey. Proc. IFAC Symposium on 
Advanced Control of Chemical Processes, Kyoto, 

Japan, pp. 203-214. 

IFAC - 420 - ADCHEM 2006


