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1. INTRODUCTION

In the process industries, Advanced Process Control
(APC) plays a fundamental role for the achievement
of economical benefits with respect of safety and qual-
ity constraints. APC systems perform multivariable
model-based control and require, therefore, a model
of the process to be controlled. For simple (small)
processes this model can be derived from fundamental
equations, but in most cases a (linear) model is iden-
tified from data, either collected during specific tests
or historical one. Model Predictive Control (MPC)
algorithms are the kinds of APC systems most widely
used in the process industries, especially in refinery
and petrochemical plants (Qin and Badgwell, 2003).

Traditionally, model identification for MPC design is
conducted in an “open-loop” fashion, i.e. starting from
some steady state, each manipulated variable is var-
ied, usually once at a time according to some pat-
tern (often sequences of steps, from which the usual
name of “step tests”), and data of all output variables
are collected. Then, using identification techniques,

1 Corresponding author. Email: g.pannocchia@ing.unipi.it, Fax:
+39 050 511266.

a multiple-input single-output (MISO) model is ob-
tained for each output variable. This step test MISO
identification approach has several drawbacks:

(1) The time required to complete step tests in
all variables can be very long, since one typ-
ically waits until all controlled variables reach
a steady state (so that the model gains can be
obtained) before introducing a new step. For
some processes, like superfractionators, wait-
ing for a new steady state can be “impractical”
(times-to-steady-state are of the order of several
days), and some modifications may be necessary
(Pannocchia and Brambilla, 2005).

(2) The quality of the obtained model can be poor
because open-loop uncorrelated input signals
may not excite the process dynamics in all rele-
vant “directions” (Koung and MacGregor, 1994;
Zhu, 2001). Moreover MISO identification of
ill-conditioned processes can result in erroneous
models (Dayal and MacGregor, 1997).

(3) Open-loop unstable or integrating processes can-
not be handled with open-loop tests.

Mainly for these reasons, open-loop identification
methods based on different multivariable input sig-
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nals and/or closed-loop identification methods have
become more popular during the last decade [see e.g.
Hjalmarsson et al. (1996), Forssell and Ljung (1999),
Zhu (2001), Zhu and Butoyi (2002) and references
therein]. With regards of methods for computing the
model parameters it is remarkable to notice that most
of current research is focused on subspace meth-
ods (Verhaegen and Dewilde, 1992a; Verhaegen and
Dewilde, 1992b; Van Overschee and De Moor, 1994;
Favoreel et al., 2000; Wang and Qin, 2002; Huang et
al., 2005). The strength of these methods is due to
their numerical robustness, applicability to both open-
loop and closed-loop data (with some extra care), and
the fact that they directly generate state-space models
which are becoming the standard models in industrial
MPC algorithms (Qin and Badgwell, 2003).

In the present paper, a rigorously simulated heat-
integrated distillation process is studied to evaluate the
effectiveness of subspace identification techniques for
the design of constrained multivariable predictive con-
trol algorithms. As well-known, distillation (the sepa-
ration method most widely used in the process indus-
tries) is particularly energy consuming. It is estimated
that 3% of energy consumption of the world is due
to distillation processes (Engelian et al., 2003), and
therefore a natural interest in heat-integrated processes
is justified. However, heat integration introduces a
number of issues, especially from a control point of
view [see e.g. (Ding and Luyben, 1990; Hansen et
al., 1998; Engelian et al., 2003; Engelian and Skoges-
tad, 2004) and references therein], mainly due to rele-
vant interactions among process variables. Therefore,
these characteristics along with the presence of dy-
namics with large time constants make multivariable
model identification and control particularly suited
for these processes. The process model used by the
controller is obtained by means of a subspace mul-
tivariable identification, and closed-loop results are
presented to show to achievable benefits.

2. MULTIVARIABLE SUBSPACE
IDENTIFICATION

2.1 Overview of subspace identification methods

Discrete linear time-invariant systems are considered
in this paper, in the following form:

xk+1 = Apxk + Bpuk + wk

yk = Cpxk + vk
(1)

in which x ∈ R
np is the state vector, u ∈ R

m is
the input vector, y ∈ R

p is the output (measured)
vector, the (true) system matrices (Ap, Bp, Cp) have
appropriate dimensions, w ∈ R

np and v ∈ R
p are

(unmeasured) noise vectors. The basic identification
problem is to find estimates of the system matrices
(A,B, C) and order n, and possibly of the statistical
properties, i.e. the covariance, of w and v. Notice that
the feed-through from u to y is omitted in (1) because
this is the typical case of most processes. If necessary,
one can add the appropriate term and estimate the
corresponding matrix (typically denoted with D).

Subspace identification methods achieve these goals
by starting from the Kalman predictor:

x̂k+1 = Ax̂k + Buk + Kek

yk = Cx̂k + ek
(2)

in which x̂ ∈ R
n is the predicted state, e ∈ R

p is
noise, (A,B,C) are the model matrices and K ∈
R

n×p is the Kalman predictor gain matrix (to be de-
termined). Given an arbitrary time-point k, the vector
of future outputs can be constructed as:

yf
k =

⎡
⎢⎢⎣

yk

yk+1

...
yk+r−1

⎤
⎥⎥⎦ (3)

in which r is a positive integer. A similar straightfor-
ward definition can be made for the vectors of future
inputs and noise, denoted with uf

k and ef
k , respectively.

From (2), one can write

yf
k = Γrx̂k + Hu

r uf
k + He

ref
k (4)

in which Γr is the extended observability matrix, Hu
r

and He
r are lower block-triangular Toeplitz matrices

associated to inputs and noise:

Γr =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAr−1

⎤
⎥⎥⎥⎥⎥⎦

Hu
r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · · · · 0

CB
. . .

. . .
...

CAB
. . .

. . .
...

. . .
. . .

CAr−2B · · · CAB CB 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

He
r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · · · · 0

CK
. . .

. . .
...

CAK
. . .

. . .
...

. . .
. . .

CAr−2K · · · CAK CK I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Then, one can rewrite the basic relation (4) for N time-
points as:

Y f = ΓrX̂ + Hu
r Uf + He

rEf (6)

in which

Y f =
[
yf
1 yf

2 · · · yf
N

]
Uf =

[
uf

1 uf
2 · · · uf

N

]
Ef =

[
ef
1 ef

2 · · · ef
N

]
X̂ =

[
x̂1 x̂2 · · · x̂N

]
(7)

Starting from (6), subspace methods obtain an esti-
mate of Γr and Hu

r (from which the model matrices
can be calculated) by removing the noise and/or the
future input terms with appropriate matrix multipli-
cations, i.e. by projection onto some subspaces. Each
method differs from the others in the matrices used
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to perform these projections and in the way the fi-
nal model matrices are obtained from Γr and Hu

r . In
the next sections the orthogonal projection approach
(Huang et al., 2005; Wang and Qin, 2002) is reviewed,
and a modification used in this work is proposed.

2.2 Orthogonal projection method (modified)

The key idea is to use instrumental variables to remove
the noise from (6), i.e. to multiply (6) by a matrix WT

such that limN→∞ 1
N EfWT . Thus, one can write[

I −Hu
r

]
ZfWT = ΓrX̂WT (8)

in which

Zf =
[
Yf

Uf

]
(9)

Then, multiplying (8) on the left by a matrix Γ⊥
r such

that Γ⊥
r Γr = 0, permits one to obtain:

Γ⊥
r

[
I −Hu

r

]
ZfWT = Γ⊥

r

[
I −Hu

r

]
Z = 0 (10)

in which Z = ZfWT .

Wang and Qin (2002) chose W = Zp, which is the
matrix of past outputs and inputs, whose definition
is straightforward. This serves as a good instrument
because Ef (future noise) is independent of Zp (past
outputs and inputs). Huang et al. (2005) instead pro-
pose using W = ZT

p (ZpZp)−1Zp, which performs an
orthogonal projection onto the row space of Zp. This
latter method is used in this work. Performing an SVD
of Z leads to

Z =
[
U1 U2

] [
Σ1 0
0 0

] [
V T

1

V T
2

]
(11)

in which the dimension of Σ1, i.e. the rank of Z,
should be equal to mr + n (Wang and Qin, 2002,
Lemma 1). In practice, the rank and consequently the
order n are determined from the singular values, using
e.g. an Akaike Information Criterion as in (Wang
and Qin, 2002) or using a heuristic PCA approach
(Micchi, 2005). From (11), one obtains that (10) is
satisfied if

Γ⊥
r

[
I −Hu

r

]
= MUT

2 (12)

in which M is an arbitrary non-singular matrix of
dimension pr−n (usually chosen equal to the identity
matrix). Finally, by partitioning

MUT
2 =

[
PT

1 PT
2

]
(13)

in which P1 ∈ R
pr×(pr−n), it follows from (12) that

PT
1 Γr = 0 (14)

−PT
1 Hu

r = PT
2 (15)

which can be easily solved to compute Γr and Hu
r ,

from which it is possible to obtain the system matrices
as described next.

Given the computed estimate of the extended observ-
ability matrix Γ̂r, it is straightforward to compute A
and C from the following relations:

C = Γ̂r(1 : p, :) (16)

Γ̂r(p + 1 : pr, :) = Γ̂r(1 : p, :)A (17)

in which a MATLAB notation is used and the last
equation is solved for A in a least-square sense. Wang
and Qin (2002) and Huang et al. (2005) propose using
the first block column of Hu

r to compute B (and D if
appropriate) with a least-square equation. This method
was investigated in (Micchi, 2005) who found that
poor estimation of B (and D) is obtained in a number
of cases. Therefore a different approach is used in this
work. Given A and C, let ŷk|B denote the estimate of
yk given past inputs and a generic matrix B, i.e.

ŷk|B = C
k−1∑
j=0

AjBuj (18)

By differentiating ŷk|B with respect to the elements of
B, (18) can be rewritten as follows:

ŷk|B = ϕk Vec B (19)

where ϕk ∈ R
p×nm is the corresponding Jacobian

matrix and Vec is the operator that builds a vector from
a matrix by stacking its columns on top of each other.
Then, given N measured output vectors y1, . . . , yN ,
the following least-square regression problem can be
posed:

argmin
Vec B

N∑
k=1

‖yk − ŷk|B‖2
2 (20)

whose solution is

Vec B = (ΦT Φ)−1ΦT YN (21)

in which

Φ =

⎡
⎢⎢⎣

ϕ1

ϕ2

...
ϕN

⎤
⎥⎥⎦ , YN =

⎡
⎢⎢⎣

y1

y2

...
yN

⎤
⎥⎥⎦ (22)

Notice that in these formulae a zero initial condition
is assumed; but the initial state x0 can be estimated
with straightforward extensions. Also notice that exis-
tence of (ΦT Φ)−1 depends on the input signal being
sufficiently exciting.

3. PREDICTIVE CONTROL

The model predictive control algorithm used in this
work is based on three modules: a state and distur-
bance estimator, a steady-state target optimizer and
a dynamic input sequence optimizer, which are exe-
cuted at each sampling time, as described next.

3.1 State and disturbance estimation

Given the (identified) state-space matrices (A,B,C),
the system model is augmented with fictitious distur-
bances to guarantee offset-free control (Pannocchia
and Rawlings, 2003), as follows:[

xk+1

dk+1

]
=

[
A Bd

0 I

] [
xk

dk

]
+

[
B
0

]
uk

yk =
[
C Dd

] [
xk

dk

] (23)
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in which d ∈ R
p is the integrating disturbance,

(Bd, Dd) are matrices of suitable dimensions, cho-
sen to satisfy an appropriate detectability condition
(Pannocchia and Rawlings, 2003). The augmented
state is estimated, at each sampling time, from the
measured output vector yk by using a steady-state
Kalman filter:

x̂k|k = x̂k|k−1 + Lxek

d̂k|k = d̂k|k−1 + Ldek

(24)

in which ek = yk − (Cx̂k|k−1 + Ddd̂k|k−1), while

x̂k|k−1 and d̂k|k−1 are the state and disturbance vec-
tors predicted at the previous sampling time, as dis-
cussed at the end of Section 3.3.

3.2 Steady-state target calculation

Using the disturbance estimate d̂k|k, a steady-state
optimization problem is solved to find the current
targets for states and inputs such that offset in (some)
controlled variables is (possibly) removed and the
constraints satisfied. To this aim, it is assumed that a
subset of the measured output vector, z = Hzy has a
known setpoint vector z̄, and the following quadratic
program (QP) is considered:

(x̄k, ūk) = argmin
xs,us

uT
s R̄us (25a)

subject to:

xs = Axs + Bus + Bdd̂k|k (25b)

z̄ = Hz(Cxs + Ddd̂k|k) (25c)

umin ≤ us ≤ umax (25d)

ymin ≤ Cxs + Ddd̂k|k ≤ ymax (25e)

in which R̄ is a symmetric positive definite matrix,
umin (umax) and ymin (ymax) are vectors which con-
tain the minimum (maximum) limits for inputs and
outputs, respectively. If, for a given disturbance esti-
mate d̂k|k, the problem (25) turns out to be infeasible,
a second QP is posed by softening setpoint constraints
(25c) and output constraints (25e), i.e. by solving

min
xs,us,ηs,εs

uT
s R̄us + ηT

s Q̄ηs + εT
s P̄ εs (26a)

subject to:

xs = Axs + Bus + Bdd̂k|k (26b)

z̄ = Hz(Cxs + Ddd̂k|k) + ηs (26c)

umin ≤ us ≤ umax (26d)

ymin − εs ≤ Cxs + Ddd̂k|k ≤ ymax + εs (26e)

in which Q̄ and P̄ are positive definite matrices.

3.3 Optimal input sequence calculation

Having computed the state and input targets, and de-
fined the corresponding output target vector as ȳk =
Cx̄k+Ddd̂k|k, an optimal input sequence vector vk =[
vT
0,k vT

1,k · · · vT
N−1,k

]T
, is computed (along with a

corresponding vector of slacks for output constraints,
εk) from the following optimization problem:

(vk, εk) = argmin
v,ε

(x̄k − wN )T P (x̄k − wN )+

N−1∑
j=0

{
∆vT

j S∆vj + rT
j Qrj + εT

j Qεεj

}
(27a)

subject to:

w0 = x̂k|k, v−1 = uk−1 (27b)

wj+1 = Awj + Bvj + Bdd̂k|k (27c)

rj = ȳk − (Cwj + Ddd̂k|k) (27d)

umin ≤ vj ≤ umax (27e)

ymin − εj ≤ Cwj + Ddd̂k|k ≤ ymax + εj (27f)

in which N is a positive integer (referred to as hori-
zon), ∆vj = vj − vj−1, the matrices S, Q, Qε are
symmetric positive definite and the symmetric positive
semidefinite matrix P is computed from an appro-
priate Riccati equation associated to (27). Given the
optimal input vector vk, only the first component is
injected into the plant, i.e.

uk = v0,k (28)

and the predicted state and disturbance vectors for the
next sampling time are accordingly defined:

x̂k+1|k = Ax̂k|k + Buk + Bdd̂k|k
d̂k+1|k = d̂k|k

(29)

4. CASE STUDY

4.1 Process description

The separation of propane and propylene is considered
as a case study. Due to the very low relative volatility,
this separation is conducted in superfractionators, i.e.
columns with large number of trays and high reflux
ratios, and is therefore particularly suited for heat-
integration via thermo-compression because of the
small difference in boiling temperature between top
and bottom products.

The process layout is depicted in Figure 1 along with
the regulatory PID control loops. Due too the high re-
flux ratios, reflux rate is used to control the condenser
drum, which is common practice in superfractionator
columns. The column has 210 stages, it operates at a
top pressure of 9.5 bar (bottom pressure is 10.6 bar)
and the vapor phase feed enters the column at stage
166. The top stage vapor is compressed at a pres-
sure of 19 bar and then it is partially condensed in a
heat exchanger (condenser/reboiler), whose cold fluid
is the liquid draw from the bottom of the column,
which is consequently vaporized to generate the boil-
up flow returned to the last stage of the column. The
condenser/reboiler operates with an average ∆T of
25 ÷ 30oC, and the vapor/liquid stream leaving this
exchanger is totally condensed and sub-cooled in a
trim cooler. Details of the main operating variables
are reported in Table 1. Further details regarding this
study can be found in (Bulleri, 2005).
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Table 1. Main operating variables

Feed rate Feed propylene Internal reflux Distillate rate Distillate Bottom
(tonne/hr) fraction ratio (tonne/hr) propylene fraction propane fraction

20.0 0.70 12.1 13.3 0.9955 0.9162

Fig. 1. Heat-integrated distillation process layout

The process is simulated using the rigorous dynamic
simulator HYSYSTM (version 3.2), while the predic-
tive controller is implemented in MATLAB (version
7.0.1). Dynamic communication between the two en-
vironments is achieved using appropriate exchange
spreadsheet modules. The predictive controller, at
each sampling time, reads the values of all controlled
variables from the process simulator, performs its in-
ternal calculations and returns the value of the manip-
ulated variables (i.e. the setpoints of regulatory PID
controllers) to the process simulator.

4.2 Identification and control results

Three manipulated variables and seven controlled
variables are considered for design of the predictive
controller. The manipulated variables are the setpoints
of distillate and boil-up flow-rate controllers and of
the column pressure controller. The controlled vari-
ables are the opening percents of all control valves
and the distillate propylene fraction and bottom prod-
uct propane fraction. For these latter variables desired
setpoints are defined, while all control valves are only
required to meet inequality constraints, as shown in
Table 2.

Data for identification are obtained by perturbing the
reference value of the manipulated variables with
Generalized Binary Noise [GBN, see e.g. (Zhu, 2001)]
signals. Notice that these input signals affect all ma-
nipulated variables simultaneously and independently
of the controlled variables, i.e. a multivariable open-

Table 2. Upper and lower limits (and refer-
ence setpoints) for MVs and CVs.

Variable Lower Setpoint Upper
Dist. rate (tonne/hr) 12.6 – 14.0
Boilup rate (tonne/hr) 150 – 173
Pressure (bar) 9.4 – 9.6
Boilup OP (%) 10 – 90
Reflux OP (%) 10 – 90
Bottom OP (%) 10 – 90
Distillate OP (%) 10 – 90
Cool. Water OP (%) 10 – 90
Dist. propyl. frac. 0.97 0.9955 0.9984
Bottom propane frac. 0.85 0.9162 0.982

loop test design is performed. 2 Compared to tradi-
tional step tests, these signals usually have shorter
duration; moreover, they excite the process dynamics
much more thoroughly, thus allowing a more effec-
tive model identification. For the present application,
a traditional step approach would have required an
overall plant testing time at least 20÷30 times larger
than that required using multivariable GBN signals.
Using these data, the orthogonal projection method
is applied and a (stable) state-space linear model of
order n = 12 is obtained and used to implement the
predictive controller described in Section 3.

For comparison with the proposed MPC regulator, two
decentralized (PI controllers cascaded on correspond-
ing flow-rate controllers) quality control schemes are
considered: DV (distillate rate controls the distillate
composition, boil-up rate controls the bottom compo-
sition) and VD (vice-versa). As an example, closed-
loop simulation results of a setpoint change in the
compositions of the products are reported. Due too
space limitations, closed-loop results for disturbance
changes, as well as specific robustness analysis results
are not presented. It should, however, be mentioned
that since the plant is simulated with a rigorous non-
linear model, an intrinsic mismatch exists between the
plant and the linear model used in the MPC regu-
lator. The controllers are required to reduce the pu-
rity of both products: the distillate propylene fraction
changes from 0.9955 to 0.993 while the bottom prod-
uct propane fraction changes from 0.9162 to 0.913. In
Figure 2 the behavior of the products’ compositions
is reported for each controller, while in Figure 3 the
behavior of distillate and boil-up rate is reported for
each controller. From these figures, the benefits of us-
ing a multivariable constrained control algorithm are
evident, since the products’ compositions reach their
setpoint much more quickly (notice the large time
scale) due a more coordinate action of the manipulated

2 Closed-loop tests, other signals (PRBS, steps, . . . ) and several
subspace and prediction error methods were studied and compared
in (Micchi, 2005).
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Fig. 2. Products’ composition for three controllers.
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Fig. 3. Distillate and boilup rate for three controllers.

variables and an appropriate saturation of the con-
straints when necessary. These results also indicates
that multivariable subspace identification methods are
effective for superfractionators, which present large
time constants and for which traditional step tests are,
therefore, impractical.

5. CONCLUSIONS

In this paper the effectiveness of subspace multivari-
able identification techniques was studied for a heat-
integrated distillation process simulated with a rigor-
ous dynamic simulator model. This process is char-
acterized by large time constants and hence traditional
step tests are undesirable and impractical. Generalized
Binary Noise signals were successfully used to obtain
informative input/output data. A (modified) orthogo-
nal projection algorithm was implemented to identify
a state-space model used to build a constrained multi-
variable predictive controller, whose effectiveness was
tested in closed-loop simulations.

A final remark concerns the potential benefits and
flexibility of using rigorous simulators, which can
prove useful for shortening the model identification
and controller design/commissioning phases in APC
projects, especially for processes with large number
of variables (Pannocchia et al., 2005) and/or slow
processes like the one considered in this paper.
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