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Abstract: An output-feedback (OF) control to stabilize continuous free-radical solution 

polymer reactors is presented, on the basis of continuous measurements of temperatures, 

level and flows, and discrete-delayed measurements of molecular-weight (MW). First, the 

state-feedback controller is presented, and its behavior is the recovery target for the OF 

design. The OF control consists of continuous linear PI-type decentralized volume and 

cascade temperature controllers, a continuous material-balance monomer controller, and a 

discrete MW controller. The temperature controller requires two approximate static 

parameters, the monomer controller requires the heat capacity function, and the MW 

controller requires one static parameter and initiation constants (pre-exponential factor 

and activation energy), which are fewer modeling requirements than the ones of the case 

without MW measurements. The proposed control technique has a systematic 

construction and simple tuning guidelines, and is tested with an industrial size reactor 

through simulations. Copyright © 2006 IFAC

Keywords: Polymerization reactor control, decentralized control, discrete measurements, 

discrete estimator, chemical process control, continuous process control. 

1. INTRODUCTION 

In the last two decades the polymerization reactor 

problem has been the subject of extensive theoretical, 

simulation and experimental studies, given the 

demand of processes with better compromises 

between safety, productivity and quality, and the 

development of control methods. In a typical 

industrial setting, the volume and temperature are 

controlled with decentralized linear PI controllers, 

and the conversion and molecular weight (MW) are 

feedback and/or feedforward controlled with 

inferential, advisory, or supervisory control schemes. 

On the other hand, in the academic field a diversity 

of control techniques have been employed, such as 

nonlinear geometric (Soroush and Kravaris, 1993; 

Alvarez, 1996; Gauthier and Kupka, 2001), MPC 

(Mutha et al., 1997), and calorimetric (Alvarez et al., 

2004) control techniques; these controllers have been 

implemented with open-loop (Soroush and Kravaris, 

1993), extended Kalman filter (EKF) (Mutha et al, 

1997), and Luenberger (Alvarez, 1996; Gauthier and 

Kupka, 2001) nonlinear observers. Despite valuable 

insight has been gained in the understanding of the 

polymer reactor control problem, the resulting 

nonlinear controllers are strongly interactive and 

model dependent, signifying complexity and 

reliability drawbacks for industrial applicability. 

Recently, González and Alvarez (2005) presented a 

PI-inventory controller which: (i) combines the 

simplicity features (linearity, decentralization, and 

modeling dependency) of the PI and inventory 

industrial controllers (Shinskey, 1988; Luyben, 1990) 

with the structure and robustness design tools offered 

by the nonlinear geometric (Isidori, 1995) and 

constructive (Sepulchre et al., 1997) control 

approaches, (ii) recovers the behavior of an exact 

model-based nonlinear state-feedback (SF) passive 

controller, (iii) employs continuous-instantaneous 

(CI) measurements of volume, temperatures and 

flows, (iv) doubles the molecular-weight (MW) 
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response speed in comparison with the MW open-

loop mode, and (v) regulates the MW with an offset 

whose size depends on the accuracy of the initiation 

rate and transfer models.  

These observations rise the issue that constitutes the 

motivation of the present work: the incorporation of 

discrete-delayed (DD) MW measurements to speed-

up the response and eliminate the asymptotic offset 

of the MW output.  

In this work, an output-feedback (OF) controller to 

regulate a (possibly open-loop unstable) 

polymerization reactor is presented, on the basis of: 

(i) continuous level, temperature and flow 

measurements, (ii) discrete-delayed MW 

measurements, and (iii) mass-energy balances. For 

applicability purposes, the quest of linearity, 

decentralization and reduced model dependency 

features as well as the derivation of conventional-like 

tuning guidelines are important design objectives. 

2. CONTROL PROBLEM 

Consider a CSTR where an exothermic free-radical 

solution homopolymer reaction takes place. 

Monomer, solvent and initiator are fed to the tank, 

and heat exchange is enabled by a cooling jacket. 

Due to the gel effect (Chiu et al, 1983), the reactor 

can have multiple steady-states (Hamer et al., 1981). 

From standard free-radical polymerization kinetics 

(Hamer et al., 1981), and viscous heat exchange 

considerations (Alvarez et al., 1996), the reactor 

dynamics are given by the following energy and 

material balances: 

T
.
 ={∆r - U(T - Tj) + (ρmqmcm + ρsqscs) (Te - T)}/C 

  := fT,  yT(t) = T (1a) 

T
.

j = {U(T - Tj) + ρjqjcj(Tje - Tj)}/CJ

  := fj,  yj(t) = Tj (1b) 

V
.
 = qm + qs - (εm/ρm) r - q := fV,  yV(t) = V (1c) 

m
.
 = - r + ρmqm - (m/V) q := fm  (1d) 

π.  = (r - π r0)π/(Vρ - m - s) := fπ,  yπ(tk) = π(tk-1) (1e) 

I
.
 = - ri + wi - (I/V) q := fi (1f) 

s
.
 = ρsqs - (s/V) q := fs (1g) 

µ. 2 = r2 - (µ2/V) q := fµ2 (1h) 

zT = T, zV = V, zm = m, zπ = π
uj = qj, uV = q, um = qm, ui = wi

r = fr(T, V, m, I, s), Q = ∆ r (2a) 

U = fU(T, Tj, V, m, s), H = U(T - Tj) (2b) 

C = fC(V, m, s), ρ = fρ(V, m, s) (2c) 

ri = fri
(T, I), (r0, r2)' = (f0, f2)'(T, V, m, I, s) (2d, e) 

θ = Wmµ2/[(Vρ - m - s)π]  (2f) 

The states (x) are: the reactor (T) and jacket (Tj)

temperatures, the volume (V), the free (i.e., 

unreacted) monomer (m), solvent (s) and initiator (I) 

masses, as well as the (number-average) molecular 

weight (π) and second moment (µ2) of the MW 

distribution. The measured exogenous inputs (d) are: 

the reactor (Te) and jacket (Tje) feed temperatures, 

and the solvent (qs) volumetric flowrate. The 

regulated outputs (z) are: the temperature (T), the 

volume (V), the monomer content (m), and the 

(number-average) molecular weight (π). The 

continuous-instantaneous measured outputs (yc) are: 

the temperature (yT), the volume (yV), and the jacket 

temperature (yj). The discrete-delayed measured 

output (yd) is the molecular weight (yπ). The control 

inputs (u) are: the coolant volumetric flowrate (qj)

through the jacket circuit, the exit flowrate (q), the 
monomer flowrate (qm) and the initiator mass 

feedrate (wi). ∆ is the heat of polymerization per unit 

monomer mass, Wm is the monomer molecular 

weight, εm is the monomer contraction factor, ρm (or 

cm), ρs (or cs) and ρj (or cj) are the monomer, solvent 

and coolant fluid densities (or specific heat 
capacities), C and CJ are the reacting mixture and 

cooling system heat capacities; U, ρ, r, ri, r0, and r2

are the heat transfer coefficient, the reacting mixture 

density and the rates of polymerization, initiator 

decomposition, and change of the zeroth and second 

moments (Hamer et al., 1981); θ is the MW 
polydispersity. The moment rates r0 and r2 can be 

expressed in terms of initiation and monomer and 

solvent transfer rates (Flory, 1953). 

In vector notation, the reactor model (1) is given by:  

x
.
 = f(x, d, u), y = Cyx, z = Czx (3) 

x = (T, Tj, V, m, π, I, s, µ2)' 

f = (fT, fj, fV, fm, fπ, fi, fs, f2)', d = (Te, Tje, qs)' 

y = (yc', yd)', yc = (yT, yj, yV)',      yd = (yπ)

u = (qj, q, qm, wi)', z = (zT, zV, zm, zπ)'  

In a previous study (González and Alvarez, 2005), 

the behavior of an exact model-based MIMO 

nonlinear passive SF controller was recovered by 

means of a measurement-driven controller with: 

linear-decentralized volume and cascade temperature 

PI-controllers, as well as feedforward-like monomer 

and MW controllers. Having this study as a point of 

departure, in this work is addressed the case of 

controlling the (possibly open-loop unstable) reactor 

(3) with DD MW measurements. In particular, we 

are interested in redesigning the nonlinear MW 

control component of the abovementioned study 

(González and Alvarez, 2005): (i) in the light of the 

linearity, decentralization and reduced model 

dependency features that underlie the functioning of 

the CI measurement-driven volume and temperature 

PI components, and (ii) with conventional-like tuning 

guidelines that account for the DD nature of the MW 

measurement. 
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3. BEHAVIOR RECOVERY TARGET 

From the development of a previous work (González 

and Alvarez, 2005), in this section an exact model-

based nonlinear SF passive controller is presented, 

whose behavior is the recovery target of the proposed 

OF controller. Since the following solvability 

conditions  

(i) fU > (Tj - T)∂Tj
fU, (ii) V fρ > m + s (4) 

(iii) ∂Ifr > π ∂If0   

(iv) Stable (solvent- MW second moment) zero-

dynamics:  x
.

I = φI(xI, d),  xI(0) = xIo

are met by the reactor class (4), the cascade (passive) 
SF controller

up = ηp(x, d, Kp, p),  up = (q, qm)'   (5a) 

us = ηs(x, d, d
.
, Ks, p),  us = (qj, wi)'   (5b) 

yields a closed-loop stable operation. Here, up (or us)

is the primary (or secondary) controller, Kp (or Ks) is 

the primary (or secondary) control gain matrix, and 

ηp, ηs, and φI are nonlinear maps (defined in 

González and Alvarez, 2005) determined by the 
kinetics (fr, f0), heat exchange (fU), and heat capacity 

(fC) functions (2) as well as some of their partial 

derivatives. The regulated outputs (z) converge to 
their nominal values as with adjustable rates (kV, kT,

km, kπ):

zV(t)
~ kV⎯→ z-V, zT(t)

~ kT⎯→ z-T (6a, b) 

zm(t)  
~ km⎯→ z-m, zπ(t)

~ kV⎯→ z-π (6c, d) 

The last controller (5) sets the limiting behavior (6) 

attainable by feedback control with maximum 

robustness and LNPA output dynamics, and such 

behavior is regarded as the recovery target for the 

development of the related measurement-driven 

controller. 

4. OUTPUT-FEEDBACK CONTROL 

As shown in our previous study (González and 

Alvarez, 2005), the direct (Luenberger or EKF) 

estimator-based implementation of the preceding 

nonlinear passive SF controller (5) is unduly 

complex and modeling dependent, and the same 

control task can be performed, in a simpler way, by 

means of a combination of (volume and temperature) 

PI decentralized feedback controllers with monomer 

and MW material-balance-based feedforward 

components that require initiation and transfer 

function models (2d, e). Since we are looking at a 

MW control redesign given the availability of DD 

MW measurements and the quest of linearity, 

decentralization and model independency features, 

let us recall the control model employed in the 

abovementioned study (González and Alvarez, 

2005), now with DD MW measurements: 

V
.
 = bV - q,    yV(t) = V (7a) 

T
.
 = aTTj + bT,  yT(t) = T (7b) 

T
.

j = ajqj + bj, yj(t) = Tj (7c) 

π.  = aπI + bπ,  yπ(tk) = π(tk-1) (7d) 

I
.
* = vi

*,  yi
*(tk) = I*(tk) (7e) 

(bV, bT, bj, bπ)' = β(x, d, u, p) (7f) 

where the nonlinear maps (bV, bT, bj) and the static 

parameters (aT, aj) are defined by González and 

Alvarez (2005), and (aπ, bπ) are given by  

aπ = - 2 π-2 f
^

d k
^

d0e-Ed/RT/[V
-

fρ(V
-

, m- , s-) - m-  - s-]

bπ = {πfr(T, V, m, I, s) - Vπ2κ(T, m, s)  

 - 2 π2fd fri
(T, I)}/[Vfρ(V, m, s) - m - s] - aπ I

Equation (7a-d) [or (7f)] is a linear-decentralized 

dynamic (or nonlinear, interactive and static) 

component, and (7) is an (exact) b-parametric 

representation of the actual reactor model (1). I* is 

the initiator content regarded as a “virtual control 

input” in a cascade configuration, and I
.
* = vi

* is its 

time derivative. The MW measurement (yπ) available 

at k-th time (tk) is the value of the MW sampled at 

the time tk-1. In other words, the MW measurement 

involves a delay of one sampling period. 

Observe that bV, bT, bV, and bπ are unknown inputs 

that are determined by the measurements (u, y, y
.
),

and consequently, can be quickly reconstructed  by 

means of a set of linear, decentralized observers, one 

for each (bi-yi) pair. Since the construction of the CI 

measurements-based observers and their 

corresponding feedback controllers are given in a 

previous study (González and Alvarez, 2005), here it 

suffices to address the development of a suitable 

discrete observer for the MW measurement and the 

construction of the related controller. 

4.1 MW estimator 

To handle the DD nature of the MW measurement, a 

discrete state estimator must be employed, and the 

load disturbance bπ (8) can be estimated from the DD 

MW measurement (yπ) in conjunction with the MW 

balance (7d). To construct the discrete estimator, let 

us make the standard estimation assumptions b
.

π ≈ 0,    

v
.

i
* ≈ 0, and write the Euler discrete version of these 

equations in conjunction with the discrete 

approximations of the MW balance (7d) and the 

initiator set point derivative (7e), and obtain the 

discrete model of the MW balance and of the initiator 

set point filter: 

π(tk) = π(tk-1) + [aπI(tk-1) + bπ(tk-1)] δ (8a) 

bπ(tk) = bπ(tk-1) yπ(tk) = π(tk-1) (8b) 
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I*(tk+1) = I*(tk) + vi
*(tk) δ   (9a) 

vi
*(tk+1) = vi

*(tk) yi
*(tk) = I*(tk) (9b) 

The application of the geometric discrete estimation 

technique (Hernández and Alvarez, 2003) yields the 

MW estimator (10) and initiator setpoint filter (11):  

π̂(tk) = π̂(tk-1) + [aπI
^
(tk-1) + b

^
π(tk-1)] δ

 + kD1
[yπ(tk) - π̂(tk-1)] (10a) 

b
^

π(tk) = b
^

π(tk-1) + kD2
[yπ(tk) - π̂(tk-1)] (10b) 

I
^*(tk+1) = I

^*(tk) + v̂ i
*(tk) δ + kD1

[yi
*(tk) - I

^*(tk)] (11a) 

v̂ i
*(tk+1) = v̂ i

*(tk) + kD2
[yi

*(tk) - I
^*(tk)] (11b) 

where the (kD1
, kD2

) are the discrete estimator gains 

according to the following expressions 

kD1
 = 2 - 2 e-ζωδ cos[ωδ(1 - ζ2)1/2], δ = tk - tk-1

kD2
(ζ, ω, δ) = 1 + e-2ζωδ - 2 e-ζωδ cos[ωδ(1 - ζ2)1/2]

δ is the sampling period, and ω (or ζ) is the 

characteristic frequency (or damping factor) 

associated to the mappings of the estimator design 

poles into the continuous representation in the LHS 

of the complex plane (Hernández and Alvarez, 

2003). 

Observe that, due to the discrete nature of the MW 

(8) and initiator setpoint (9) models and the DD 

feature of the MW measurement: (i) the initiator 

setpoint filter (11) is a one-step-ahead predictor, and 

(ii) the MW estimator (10) yields the present 

estimate on the basis of the actual MW value one-

step-behind.  

4.2 MW SF controller 

Recall the discrete MW balance (8a), regard the 

initiator content (I) as a virtual controller (I*), impose 

the closed-loop discrete dynamics (with gain kπ) for 

the MW, this is, 

aπI*(tk) + bπ(tk)] = - kπ[π(tk) - z-π]

solve this equation for I* to obtain the primary MW 

SF controller (12a), and combine this primary 

controller with the initiator balance (1f) to obtain the 

secondary controller (12b). Thus, the result is the 

cascade MW SF controller

I*(tk) = {bπ(tk) + kπ[π(tk) - z-π]}/aπ   (12a) 

wi = vi
*(tk+1) + fri

[T, I*(tk)] + [I*(tk)/V]q  (12b) 

driven by discrete [π(tk)] and continuous (V, T, q) 

measurements.  

4.3 Output-feedback reactor controller 

The combination of the MW SF controller (12) with 

the MW estimator (10) and initiator setpoint filter 

(11) yields our DD MW measurement-driven 

controller (13c), and the volume, temperature and 

monomer controllers are the ones presented in a 

previous study. Thus, the entire OF reactor 
controller is given by:

Volume and temperature controllers (13a) 

V
^
.

 = b
^

V - q + 2ζω(yV - V
^

),  b
^
.

V = ω2(yV - V
^

)

T
^
.

 = aTT
^

j + b
^

T + 2ζω(yT - T
^

),  b
^
.

T = ω2(yT - T
^

)

T
^
.

j = ajqj + b
^

j + 2ζω(yj - T
^

j),  b
^
.

j = ω2(yj - T
^

j)

q = b
^

V + kV(V
^

 - z-V)

Tj
* = - [(b

^
T + kT(T

^
 - z-T)]/aT

T
.

j
* = - {ω2(yT - T

^
) + kT[aTT

^
j + b

^
T + 2ζω(yT - T

^
)]}/aT

qj = [T
.

j
* - b

^
j - kj(T

^
j - Tj

*)]/aj

Monomer controller (13b) 

m̂
.

 = - r̂ + ρmqm- (m̂/V
^

) q, ŝ
.

 = ρsqs - (ŝ/V
^

) q 

 r̂ = [fC(V
^

,m̂,ŝ)(aTT
^

j+b
^

T) + CJb
^

j)]/∆

qm = [- km(m̂ - z-m) + r̂ + (m̂/V
^

) q]/ρm

MW controller (13c) 

I
^
.

 = - fri
(T

^
, I

^
) + wi - (I

^
/V

^
) q 

π̂(tk) = π̂(tk-1) + [aπI
^
(tk-1) + b

^
π(tk-1)] δ

 + kD1
[yπ(tk) - π̂(tk-1)]  

b
^

π(tk) = b
^

π(tk-1) + kD2
[yπ(tk) - π̂(tk-1)]  

I
^*(tk+1) = I

^*(tk) + v̂ i
*(tk) δ + kD1

[yi
*(tk) - I

^*(tk)] 

v̂ i
*(tk+1) = v̂ i

*(tk) + kD2
[yi

*(tk) - I
^*(tk)]  

I*(tk) = {b
^

π(tk) + kπ[π̂(tk) - z-π]}/aπ

wi(tk) = v̂ i
*(tk+1) + fri

[T
^

, I
^*(tk)] + [I

^*(tk)/V
^

] q   

This OF controller (13) consists of linear PI-type 

decentralized volume and cascade temperature 

controllers (13a), linear and decentralized cascade 

MW controller (13c), and a material-balance 

monomer controller (13b). Comparing with the case 

without MW measurements (González and Alvarez, 

2005), the OF controller (13) has: (i) a linear discrete 

estimator with MW measurements (10), coordinated 

with a linear discrete estimator (11) for the initiator 

set point (I*), and (ii) an initiator feedrate input (12b) 

from a material balance, without feedback term. The 

discrete estimator (10) replaces the continuous MW 

estimator without MW injection of the 

abovementioned work, and has fewer modeling 

requirements. 

Model requirements. The modeling requirements of 

the proposed OF controller (13) are the following: (i) 

the temperature controller requires two approximate 
static parameters (aT, aj), (ii) the MW controller 

requires one static parameter (aπ) and initiation 

constants [pre-exponential factor and activation 
energy in the function fri

 of (12b)], and (iii) the 

monomer controller requires the heat capacity 
function (fC) and the related calorimetric parameters. 
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Comparing with the modeling requirements of the 

case without MW measurements (González and 

Alvarez, 2005), the proposed controller (13) does not 

need the transfer function model, and this is so 

because of the DD MW measurement introduced in 

the primary control part. On the other hand, these 

modeling requirements are considerably smaller than 

the ones of the estimator-based nonlinear controllers 

employed in previous polymer reactor studies 

(Soroush and Kravaris, 1993; Alvarez, 1996; Mutha 

et al., 1997; Gauthier and Kupka, 2001). 

Closed-loop dynamics and tuning. The rigorous 

assessment of the robust closed-loop behavior goes 

beyond the scope of the present work, and here it 

suffices to state that: (i) such assessment can be 

performed with a suitable extension (Hernández and 

Alvarez, 2003) of the nonlocal input-to-state stability 

framework employed in the case without MW 

measurements (González and Alvarez, 2005), and (ii) 

the related tuning guidelines amount to the ones 

given in the last work for the CI measurements and 

to the ones given by Hernández and Alvarez (2003) 

for a discrete estimator. Next are given the tuning 

guidelines for the present case: 

1. Choose the sampling period δ (equal to the 

measurement delay) to be from 1/10th to 1/20th of 

reactor residence time, according to the well known 

sampling theorem-based criterion (Stephanopoulos, 

1984) employed in control designs. 

2. Set the MW control gain at the inverse of the 

nominal residence time, kπ = 1/τR and set the 

estimator frequency parameter (ω) about three times 

faster, ω = 3/τR.

3. Increase the estimator parameter ω up to its 

ultimate value ω+, where the response becomes 

oscillatory, and backoff until a satisfactory response 

is attained, say at ω ω+/3. 

4. Increase the MW gain kπ up to its ultimate value 

kπ+, and then back off until a satisfactory response is 

attained, say kπ  kπ+/3. 

This tuning should yield a closed-loop stable reactor 

where the discrete-delayed measured MW is 

regulated asymptotically with almost linear error 

dynamics and adjustable convergence rate, 

depending on modeling errors, measurement noise, 

measurements sampling period and delay, and 

natural reactor dynamics. 

5. APPLICATION EXAMPLE 

To subject the OF controller to an extreme industrial 

situation, let us consider (via numerical simulations) 

the operation of a reactor about an open-loop 

unstable steady-state, at high-solid fraction with the 

potentially destabilizing gel-effect at play. The 

system is methyl methacrylate (monomer)-ethyl 

acetate (solvent)-AIBN (initiator). The residence 

time is τR = 220 minutes with a nominal volume z-V ≈
2000 L. The operating conditions are given by 

González and Alvarez (2005), and the reactor has 

three steady states x- =[T
-
(K), m- (Kg), π- (Kg/Kmol)]': 

x-1 : (373.88, 312.7, 29395.15)' 

x-2 : (351.62, 660.1, 110384.75)' 

x-3 : (329.72, 1361.1, 399149.03)' 

The second steady-state (x-2) is open-loop unstable 

and was chosen as the control setpoint. Following the 

tuning guidelines of section 4 and the ones from 

González and Alvarez (2005), the observer and 

control gains were set as follows: 

δ = 15 min, ζ = 0.71, ω = (1/5) min-1

kj = kV = ω/4, kT = kπ = ω/8, km = 1/τR

with a MW sampling period (δ) that is feasible 

according to experimental works (Mutha et al., 

1997), and an observer damping factor (ζ) that was 

set according to a Butterworth criterion (Alvarez and 

López, 1999).  

In Fig. 1, three closed-loop responses are shown with 

(i) the cascade SF controller (5), (ii) the proposed OF 

controller (13) with CI and DD measurements, and 

(iii) the proposed OF controller with CI and DD 

measurements and a typical - 20 % error in the 
frequency factor (kd0) of the initiation rate.  
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Figure 1 shows that the proposed OF controller with 

CI and DD measurements: (i) stabilizes the volume, 

temperature and monomer (related to the stability 

and the production rate level) in about 1 residence 

time; (ii) regulates the MW also in about 1.2 

residence time, or in other words, the MW response 

is almost twice faster than the response of the PI-

inventory without MW measurements (González and 

Alvarez, 2005), and 3.5 times faster than an open-

loop response (with a settling time of 4 residence 

times); (iii) regulates the outputs with similar times 

that the ones of the exact model-based SF controller 

(5); and (iv) is not affected by presence of the 

parameter error, yielding a MW response without 

offset. 

6. CONCLUSIONS 

An output-feedback controller to continuous free-

radical polymer reactor was presented, driven by 

continuous-instantaneous volume, temperature and 

flows measurements, and discrete-delayed molecular 

weight measurements. The measurement-driven 

controller consists of: (i) linear PI-type decentralized 

volume and cascade temperatures, (ii) a linear and 

decentralized cascade MW controller, and (ii) a 

material-balance monomer controller. The 

temperature controller requires two approximate 

static parameters, the monomer controller requires 

the heat capacity function, and both controllers are 

based on a continuous estimator. The MW controller 

is based on a discrete estimator, and requires one 

static parameter and initiation constants (pre-

exponential factor and activation energy), which are 

fewer modeling requirements than the ones of the 

case without MW measurements. The proposed 

control technique has a systematic construction and 

simple tuning guidelines, and the solution 

polymerization of MMA in an open-loop unstable 

industrial size reactor was considered as application 

example with numerical simulations, yielding: (i) 

output responses with convergence times similar to 

the ones of an exact model-based state-feedback 

cascade control, (ii) a MW response that is almost 

twice faster than the response of a PI-inventory 

controller without MW measurements, and (iii) a 

MW response without offset, showing that the 

controller is not affected by parameter errors. 
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