
ADCHEM 2006 

International Symposium on Advanced Control of Chemical Processes 

Gramado, Brazil – April 2-5, 2006

AUTO-TUNING OF PID CONTROLLERS FOR
MIMO PROCESSES BY RELAY FEEDBACK
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Abstract: In this paper, the auto-tuning of decentralized PID controllers for MIMO
processes using different relay feedback experiments is studied. These methods
consist in identifying the ultimate point of the process, using relay feedback
and applying Ziegler-Nichols-like formulae in order to tune the controllers. A
benchmark illustrates the benefits and drawbacks of each approach.
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1. INTRODUCTION

Relay feedback is widely applied as a tun-
ing method for single-input-single-output (SISO)
processes. The most usual applications are based
on Ziegler-Nichols and related tuning formulae,
in which the tuning is performed based on the
identification of one point of the process’ fre-
quency response - the ultimate point (Astrom
and Hagglund, 1995). More sophisticated tuning,
providing better robustness and performance, can
also be achieved by relay feedback, using different
experiments which identify several points of the
frequency response (Arruda, 2003), (Johansson
et al., 1998), (Arruda et al., 2002), (Goncalves,
2001). Such methods have shown to be quite
effective for many years, and many auto-tuning
techniques and commercial products are based on
them.

Attempts to generalize relay-feedback tuning meth-
ods to the tuning of multiple-input-multiple-
output (MIMO) plants have been described re-
cently. Two forms of generalization have been
studied: Decentralized Relay Feedback (DRF) and

Sequential Relay Feedback (SRF). In this pa-
per we review the theory on these different ap-
proaches, discuss some results, present and illus-
trate these ideas by means of a case study.

In this paper, the processes to be considered are
MIMO square processes, described by a transfer
matrix

Y (s) = G(s)U(s) (1)

with Y (s), U(s) ∈ �m. The processes are assumed
to be BIBO-stable. The aim is to design decentral-
ized PID controllers

U(s) = C(s)Y (s) (2)

=

⎡
⎢⎢⎢⎣

p1(s) 0 0 . . . 0
0 p2(s) 0 . . . 0
...

...
. . .

0 0 0 . . . pm(s)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

y1(s)
y2(s)

...
ym(s)

⎤
⎥⎥⎥⎦

where pi(s) = kpi + kii

s
+ kdis.

2. SISO RELAY FEEDBACK

The PID design based on the identification of
one point of the frequency response is considered.
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This design approach relies on the application of
simple formulae to tune the parameters of the
PID. These formulae are given in terms of the
process’ ultimate quantities. Hence, the method
consists simply in identifying somehow these char-
acteristics and then applying the formulae. This
method is usually referred to in the literature as
the closed-loop Ziegler-Nichols method. Different
formulae have been proposed over the years, after
the pioneer work by Ziegler and Nichols. Given
these variations in the method, in which the same
procedure is applied but with different formulae,
this tuning method will be refered as the ultimate

quantities method in order to avoid confusion.

The ultimate quantities are the ultimate fre-
quency ωc and the ultimate gain Kc and, for SISO
process, are defined as follows.

Definition 1. Let a BIBO-stable SISO process be
controlled by purely proportional controller u =
−Ky, with gain K ∈ [0,∞). Since the process
is stable, the feedback system is stable for suffi-
ciently small K. Assume that there exists a value
Kc such that the closed-loop system is stable
∀0 ≤ K < Kc and unstable for K = Kc + ε, for ε

an arbitrarily small positive scalar; this value Kc

is the ultimate gain of the process. On the other
hand, for K = Kc the closed-loop system is on the
verge of stability and hence a sustained oscillation
will be observed; the frequency of this oscillation
is called the ultimate frequency ωc.

Fact 1. The ultimate gain Kc exists if and only if
there exists a frequency ωπ, such that arg G(jωπ) =
−π. Furthermore, in this case ωc = ωπ. (Astrom
and Hagglund, 1995).

Different formulae have been proposed, with dif-
ferent ranges of application. Clearly, none of these
formulae can be guaranteed to provide specified
performance or even closed-loop stability. Yet, for
a wide range of processes, they provide successful
tuning.

Ziegler-Nichols PID formulae, which are used in
this paper, are kp = 0.6Kc, ki = kp/Ti =
kp/(Tc/2) and kd = kpTd = kpTc/8, where Tc =
2π/ωc.

2.1 The relay experiment

A convenient procedure to determine the ultimate
quantities is the relay experiment. This experi-
ment consists in putting the process under relay

feedback. The relay function η(·) is described as

η(e) = −dsign(e) + bias (3)

where bias = r/G(0). Then, if the process satisfies
the assumptions in Fact 1, a symmetric oscillation
is observed, and this oscillation satisfies the state-
ments below.

Fact 2. Let ωosc be the frequency of the oscilla-
tion observed in the relay experiment and Aosc be
its amplitude at the relay input. Then

ωπ = ωosc (4)

Kc =
4d

πAosc

(5)

Since the ultimate frequency is such that G(jωc) =
−π, ωosc = ωπ gives an estimate for the ultimate
frequency, so that both ultimate quantities can be
obtained by means of the relay experiment.

More complex phenomena can occur in relay feed-
back systems, such as multiple limit cycles, mul-
timodal limit cycles, and even chaotic behavior
(Arruda, 2003), (Goncalves, 2001) and (Johansson
et al., 1998), which complicates and sometimes
invalidates the relay experiment as a means to
determine the ultimate quantities of the process.
Safeguards against these phenomena and/or fur-
ther signal processing to extract the ultimate
quantities even in their presence must be pro-
vided in PID auto-tuning with relay feedback.
Still, the relay experiment has been largely and
successfully applied to SISO processes (Astrom
and Hagglund, 1995).

3. SEQUENTIAL RELAY FEEDBACK

In Sequential Relay Feedback (SRF), the control
loops are put under relay feedback one at a
time, sequentially, and m relay experiments are
performed. After the relay experiment is applied
to a given loop, the loop is closed with the tuned
PID before applying the relay experiment to the
next loop.

At each step of the SRF procedure, one PID con-
troller is applied to an input-output pair for which
a SISO relay experiment has been performed. The
input-output relationship “seen” by the controller
is the same one that was identified by the relay
experiment. So, from the point of view of closed-
loop stability, the SRF procedure is as safe as a
SISO tuning.

However, each controller is tuned taking into con-
sideration only the dynamics of the previously
tuned loops. Indeed, at the i−th step, all the loops
indexed from i + 1 until m are open and there-
fore have no influence on the system behavior.
To correct this drawback, an iterative procedure
can be performed: after closing all the loops the
procedure is repeated for all the loops. In this
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second time the loops are closed, so that all the
couplings are observed in the relay experiments.
Although good results are usually obtained with
this iterative procedure, convergence of the tun-
ing parameters is not guaranteed, and - most
important - the total number of experiments is
large; if k iterations are to be performed, km relay
experiments are necessary.

4. DECENTRALIZED RELAY FEEDBACK

In Decentralized Relay Feedback (DRF) only one
experiment is performed, with all control loops in
relay feedback, that is ui = η(ei) ∀i. Since all the
input-output pairs are connected, the behavior of
the whole multivariable system is observed at this
one experiment.

However, the theoretical analysis necessary to
the correct application of this procedure is by
necessity of a MIMO nature. The SISO reasoning
and theoretical analysis do not apply in this case,
and can only be usefull as intuitive guidelines.
The current understanding of DRF is far from
complete, so it is not clear how to make the best
use of the information provided by it.

4.1 Theoretical Analysis

The relay experiment in the SISO case serves to
identify the ultimate quantities of the process:
the ultimate gain Kc and the ultimate frequency
ωc. Based solely on these ultimate quantities the
PID tuning is determined. The definitions of ul-
timate quantities can be made mutatis mutandis

for MIMO systems.

Definition 2. Let a BIBO-stable square process
with m inputs be controlled by purely propor-
tional controller u = −Ky, with gain K =
diag{k1 k2 . . . km}, ki ∈ [0,∞). Since the
process is stable, the feedback system is stable
for sufficiently small K. Assume that there exists
a value Kc such that the closed-loop system is
stable ∀K = αKc, 0 < α < 1 and unstable for
K = Kc(1+ε), with ε an arbitrarily small positive
scalar; this value Kc is called an ultimate gain of
the process. On the other hand, for K = Kc the
closed-loop system is on the verge of stability and
hence a sustained oscillation will be observed; the
frequency of this oscillation is called an ultimate

frequency ωc.

As discussed in Section 2, the ultimate quantities
are usually unique in the SISO case; even when
they are not unique, they are countable. The
situation is quite different in the MIMO case, since
the gain K can be increased from 0 in infinite

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

gain k1

ga
in

 k
2

stable

unstable

Kc

Fig. 1. MIMO case

different directions in the parameter space. It can
be expected that a different Kc and ωc will be
found for each different direction, as depicted in
Fig. 1 The ultimate gains form a curve in the
parameter space. In the more general (m > 2) case
these gains will form a surface of dimension m−1;
this surface will be called the ultimate surface.

If PID tuning is determined based on the ulti-
mate quantities, using Ziegler-Nichols like formu-
lae, then two things must be realized. First, all
PID’s will be tuned based on the same ultimate
frequency. Second, the tuning will be dependent
on which of the ultimate quantities has been iden-
tified.

For simplicity, let m = 2. Consider that the gain
K is increased in the direction K = diag{k1 0},
that is, the second loop is kept open, and the pro-
portional gain in loop 1 is increased. The ultimate
gain that will be obtained in this experiment is the
SISO ultimate gain kc1 of the first loop. Then, if
the PID’s are tuned according to these ultimate
quantities, this tuning is the “correct” one for the
first SISO loop. On the other hand, if the gain K

as K = diag{0 k2} is increased then the “correct”
SISO tuning for the second loop is obtained. If a
different direction in the parameter space is picked
to increase the gain K, then it is expected to find a
tuning that will not be optimal for any of the two
loops, but will represent some sort of “average” of
the two. The closer this direction is to either one of
the two SISO directions defined above, the closer
the tuning will be to the corresponding “correct”
SISO tuning for that loop (Halevi et al., 1997).

Let ri be the relative importance given by the
designer to the i − th loop, so that

∑m
i=1 ri =

1. Then the desired ultimate point is the one
that is in the direction of the vector Kd =
diag{g11(0)r1 g22(0)r2 . . . gmm(0)rm}, where gii’s
are the diagonal terms of G(s).

Once the ultimate quantities are identified, a gain
sufficiently smaller than the ultimate one should
guarantee stability and enough stability margins.
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This is the reasoning in the SISO case, and also
the reasoning justifying ZN-like formulae. How-
ever, this is not necessarily true in the MIMO
case. If the ultimate curve in the parameter space
is convex, then adequate stability margins are
guaranteed by taking a gain K = αKc for suf-
ficiently small α. However, it is not possible to
guarantee that the ultimate surface is convex, or
even smooth. As a matter of fact, there are cases
in which the ultimate surface is not convex, like
in the benchmark studied in the sequel.

5. CASE STUDY - DISTILLATION COLUMN

Aiming to demonstrate the use of SRF and DRF
methods, this section presents some results ob-
tained for the control of the Wood and Berry
distillation column, whose transfer matrix is pre-
sented in (6). This process has been widely used as
a benchmark (Loh and Vasnani, 1994) and (Wang
et al., 1997). It is hard to control since it has
significant transport delay and strong coupling.

G(s) =

⎡
⎢⎣

12.8e−s

16.7s + 1

−18.9e−3s

21s + 1
6.6e−7s

10.9s + 1

−19.4e−3s

14.4s + 1

⎤
⎥⎦ (6)

5.1 Real × Estimated Ultimate Surface

The ultimate surface of a process can be obtained
from the very definition of ultimate quantities,
that is, by applying increasing gains to the inputs
of the plant until a sustained oscillation is ob-
tained. When a sustained oscillation is presented,
the “gains” applied in the plant are one ultimate
point of the surface. The ultimate gains are then
determined within a certain precision, which is
given by the size of the steps used to increase
the gains. So, although this curve is still an ap-
proximation to the actual ultimate surface, we
will refer to it as the “real ultimate surface”; the
estimate obtained by DRF will be referred to as
the “estimated ultimate surface”.

Fig. 2 shows two ultimate surfaces of the Wood
and Berry distillation column: the estimated one,
obtained by Decentralized Relay Feedback (doted
curve), and the real one (solid curve). It is clear
from the figure that the DRF experiment does
not always provide good estimates of the ultimate
quantities.

As described in section 4.1, the closer the direction
of the ultimate point is to either one of the two
directions in the parameter space (k1 or k2), the
closer the tuning will be to the corresponding
“correct” SISO tuning for that loop. So, it is
expected to find a point in the ultimate surface
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Fig. 2. Real and estimated ultimate surfaces of the
Wood and Berry distillation column.

60 70 80 90 100 110 120
−1

0

1

2

3

time (s)

output1
output2

Fig. 3. Plant’s outputs when a proportional con-
troller K = diag {1.9 − 0.2533} is applied.
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Fig. 4. Characteristic loci of the distillation col-
umn with a proportional controller K =
diag {1.9 − 0.2533}.

where information about both loops can be found.
Hence, with this ultimate point, it is expected a
better tunning of the PID controllers.

In fact, there is a point at the distillation column’s
ultimate surface for which the system presents
multimodal oscillations, as presented in Fig. 3.
This ultimate point is given by k1 = 1.9 and
k2 = −0.2533. When this ultimate gain is applied
on the plant, both characteristic loci cross the
point −1, as shown in Fig. 4.

Fig. 5 shows the response of the system controlled
by PIs obtained with ultimate values k1 = 1.9,
k2 = −0.2533 and t = 12 from the real ultimate
surface and Ziegler-Nichols like formulae. It can be
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Fig. 5. Response of the system controlled by PI -
Ziegler-Nichols like formulae - obtained with
ultimate point k1 = 1.9 and k2 = −0.2533.

Table 1. Ultimate values and PID con-
troller’s gains obtained from SRF (1st

iteration: detuning and 2nd iteration:
Ziegler-Nichols).

1st iter. 2nd iter.

loop 1 loop 2 loop 1 loop 2

Kc 1.72 -0.27 1.59 -0.19

Tc 3.90 12.37 3.80 12.27

kp 0.342 -0.163 0.955 -0.112

ki 0.058 -0.026 0.503 -0.018

kd 0.500 -0.252 0.454 -0.172

seen that, choosing the “right point”, the relative
controller provides a good performance to the sys-
tem. Unfortunatelly, this point cannot be reached
with relay experiment, because it presents mul-
timodal oscillations and the ultimate quantities
cannot be taken from it. Indeed, there is a region
around this point in which the relay experiment
does not work, as can be seeing in the estimated
ultimate surface from Fig. 2.

5.2 PID Tuning

5.2.1. Sequential Relay Feedback A sequential
relay feedback was performed in the distillation
column. The results are shown in Table 1 and Figs.
6 and 7. Table 1 presents the ultimate quantities
obtained for each loop and the related gains of
the PID controllers. Besides, these values were
obtained twice, for first and second iterations.

The results are satisfactory, suggesting that this
method can be used in order to find the ultimate
quantities for further PID tuning. The system
presents a considerable overshoot for reference
r = [1 0]

′

because Ziegler-Nichols like formulae are
used. On the other hand, the disturbance rejection
is strongly enhanced from first to second iteration
in the second loop.
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5.2.2. Decentralized Relay Feedback In order to
identify the ultimate surface, several decentralized
relay feedback experiments were performed in
the system, in which different relay amplitude
ratios d2/d1 were set. Hence, different ratios d2/d1

correspond to different weights k2g22(0)/k1g11(0).

As can be seen in Fig. 2, the estimated surface
with DRF is non-smooth for a wide range of
gains. Within this range, the system presents
multimodal limit cycles. So, it is only safe to tune
PID controllers based on information taken from
unimodal oscillations. Table 2 and Figs. 8 and 9
show the results obtained for different weights.

Fig. 8 shows the response of the system con-
trolled by PID obtained from DRF and reference
r = [0 1]

′

. It shows that, the higher the weight
k2g22(0)/k1g11(0), the larger is the overshoot of
the system. However, for a reference equal to r =
[0 1]

′

, the higher the weight k2g22(0)/k1g11(0), the
smaller is the overshoot of the system, as shown in
Fig. 9. Thus, the hard task is to find a weight that
will yield an ultimate point that provides good
performance of both loops.
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Table 2. Ultimate values and PID con-
troller’s gains obtained from DRF for
different weights (k2g22(0)/k1g11(0)).

k2g22(0)/k1g11(0) loop 1 loop 2

10.44 Kc 0.050 -0.345

Tc 11.2 11.2

kp 0.029 -0.203

ki 0.005 -0.036

kd 0.041 -0.285

2.96 Kc 0.155 -0.303

Tc 12.4 12.4

kp 0.091 -0.178

ki 0.015 -0.029

kd 0.142 -0.276

0.52 Kc 0.707 -0.241
Tc 12.7 12.7

kp 0.416 -0.142

ki 0.065 -0.022

kd 0.660 -0.226
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Fig. 8. Response of the process controlled by PID
obtained from DRF, reference r = [0 1]
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and
different weights.
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6. CONCLUDING REMARKS

In this paper, two forms of generalization of re-
lay feedback tuning to multivariable processes
are studied: Sequential and Decentralized Relay
Feedback. These “multivariable” methods extend
the SISO relay feedback to MIMO processes and

uses given formulae in order to tune the PID
controllers.

The decentralized relay experiment seems to be
the best way to obtain the ultimate quantities of
the process, since it observes the behavior of the
whole multivariable system and requires only one
experiment. However, it can present multimodal
oscillations, in which case the oscillations are not
representative of the ultimate quantities. Hence,
it is still a risky approach to tuning. Even if it
is expected that this oscillation presents more
information about the process, it is still not known
how to get them from the experiment. Indeed, the
point k1 = 1.9, k2 = −0.2533 of the real ultimate
surface, seems to be the point that intersects
both loops surface, and more characteristics of the
process are expected to be obtained in this point.

On the other hand, the Sequential Relay Feedback
requires more time to get the “right” controller
parameters. However, as only one relay is applied
at a time, it is a safer experiment because multi-
modal oscillations are not troublesome.
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