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Abstract: The control of polymer quality has become increasingly important as the 

production of polymer grades has increased in quantity and diversity. On a typical 

polymerization plant there is an extruder downstream of the reactor. This paper provides 

details on the use of the operating variables of such an extruder as an empirical sensor for 

the melt flow index, an important indicator of polymer quality. An empirical model was 

built in several stages. First a simple model was built which related the melt index with 

the extruder pressure. After many iterations a model which also included extruder speed 

and temperature compensation and a bias updating procedure was developed. The final 

bias updated model has been installed at the plant and detects a change in the melt index 

nine (9) minutes before the online instrument. The end goal is to use this soft sensor to 

build a data based plant model, and subsequently use this model to compute optimal 

grade transition trajectories in the plant. Copyright © 2005 IFAC
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1. INTORDUCTION 

The increased reliance on polymers with specifically 

tailored properties for different applications has been 

documented extensively (Alperowicz 2005). 

Previously the specifications for polymer grades and 

products were very relaxed. However, with the advent 

of much larger capacity plants; many smaller plants 

are moving from commodity to speciality polymers 

which have higher profit margins. These products 

however have tighter specifications. Thus variability 

which was acceptable before is no longer tolerable. 

This implies online properties of polymers need to be 

controlled more tightly. The more diverse, lower 

volume product requirements by speciality customers 

forces the product specification required from the 

plant to change regularly. Therefore reliable online 

polymer quality measurements are very critical.  

This research was undertaken in collaboration 

between industry and academia. The plant in this 

study was the AT Plastics EVA high pressure 

polymerization plant in Edmonton, Canada. The main 

polymer quality variable on the plant was the melt 

index. This plant ran approximately twenty grades of 

polymer regularly in the 1 – 1000 gm/min. melt index 

range. The online reading for this melt index was 

determined by an online rheometer. This instrument 

gave an update every six (6) minutes and was subject 

to transport lags. These two problems were not 

significant as there are system identification 

algorithms which can compensate for these issues. 

However, a more significant issue, because of the 

large range of melt index measurement required, was 

that the rheometer used several models and die sizes. 

Each die has a manufacturer’s recommended pressure 

range for which the readings are very close to linear. 

However, once the instrument gets close to one of the 

limits, i.e. the polymer is too hard or soft for the 

particular die and measurement temperature, the 

readings become unreliable. This is acceptable if the 

plant is running a grade campaign which does not 

have a significant change in melt index. Therefore, 

the goal of modelling the grade transitions was 

severely hampered because the rheometer data during 

the grade transitions were plagued with issues such as 

the unit having to be switched off or becoming 

unreliable, as it needed die changes or gave 

inaccurate results because it was at the end of its 

linear range. It was clear that some new variable was 

required to give online polymer melt index values. 

The measurement of polymer quality through the use 

of indirect variables (soft sensors) has been the 

subject of much research. Ohshima and Tanigaki 

2000 gave a comprehensive review of property 

estimation methods published for different 

polymerization processes. The typical design of these 
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soft sensors involves building relationships between 

the process control variables, such as the reactor, 

pressure and temperature and the polymer property to 

be controlled. The method of building this 

relationship typically involves methods such as linear 

observers (Lines et al. 1993), extended Kalman 

Filters (Scali et al. 1997), nonlinear parameter 

estimation (Kiparissides et al. 1996), neural networks 

(Chan and Nascimento 1994) and partial least squares 

(Han et al. 2005). Here a different approach is taken; 

after the reactor there is an extruder, in which many 

variables are monitored. The identification of the 

relationship between these and the polymer properties 

is the main subject of this paper. 

Watari et al. 2004 and Nagata et al. 2000 

independently used measurements from an extruder 

estimating the properties of molten polyethylene. 

However, their methods required the installation of a 

fibre optic sensor at the end of the extruder to obtain 

NIR (near infra-red) readings. The method proposed 

here uses the raw data which is commonly measured 

and monitored on extruders to give an indication of 

the melt index of the polymer produced on the 

reactor.

1.1 Outline

The plant at which this project was undertaken is 

described next followed by a description of the 

procedure for development of the melt index soft 

sensor. This includes the method for selection and lag 

times of the extruder variables. More details on the 

modelling of the errors and the significant 

disturbances that were the cause of these errors are 

then given. Methods for reducing these errors are also 

detailed. 

1.2 Process Description

The plant considered is an EVA polymerization plant. 

The plant has the ability to manufacture polymers 

over a wide range of melt indices and vinyl acetate 

(VA) content. The flow sheet for the plant is shown in 

Figure 1. 

Figure 1 – Process Flowsheet  

The monomers used are ethylene, vinyl acetate and 

propylene (used as a modifier). These are compressed 

to supercritical conditions and then mixed with 

peroxide-based initiators in a multi-zone autoclave 

reactor. An exothermic polymerization reaction 

occurs in the autoclave, and about twenty percent of 

the monomer is polymerized in a single-pass. The 

autoclave product is cooled and then goes through 

two separation stages where the unconverted 

monomers are recycled. The polymer product is then 

compounded with additives in the extruder before it is 

pelletized. There can be a build-up of inert 

components and unwanted propylene in the recycle 

loop and a purge stream is used to control this. At the 

booster compressor the majority of the Vinyl Acetate 

(VA) condenses. This is collected, refined, and then 

reused with fresh VA. There are three main heat 

exchangers (coolers) shown. These are the feed gas 

coolers, product coolers and return gas coolers. These 

become fouled over time with polymer. When this 

occurs, the pressure drop across the cooler becomes 

significant and the process efficiency is 

compromised. This fouling over time causes a drift in 

the pressures at the extruder. An operator controlled 

“cooler cook” is usually performed to remove the 

fouling. This involves increasing the temperature of 

the contents of the heat exchanger to remove the 

polymer lining from the heat exchanger inner wall. 

2. MELT INDEX SOFT SENSOR 

The steps in building the soft sensor for the melt 

index are detailed here. It was observed that the plant 

operators relied on the extruder pressure to give them 

an indication of the melt index of the polymer 

whenever the online reading was offline. 

2.1 The Extruder

A schematic of the extruder is shown in Figure 2. 

Several pressures and temperatures are monitored. 

The extruder screw is driven by a motor. The motor’s 

frequency is modulated (thus screw speed) to 

maintain a constant level in the extruder feed hopper. 

There is a mesh screen pack between the last two 

pressure sensors on the extruder. This mesh is very 

fine and becomes clogged with solids and gel 

particles over time. This causes the extruder 

variables, predominantly the upstream pressure, to 

change even if the flow rate and other conditions are 

constant. All the pressures at the extruder drift due to 

cooler fouling; while the pressures just before the 

screen pack have an even more significant drift 

because the screen pack becomes clogged. 

S
c
re

e
n

P
a

c
k

H
e
a

d

F
la

n
g
e

Figure 2– Extruder Schematic 

After the extruder there is a pelletizer. The polymer 

pellets are dried, and then pass through a hopper 
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before a side stream is used to measure the melt index 

with the online rheometer.  

The extruder is downstream of the reactor thus 

changes in the melt index of the polymer would occur 

first at the reactor and its effect felt at the extruder. 

Clearly, the online rheometer being down stream of 

the extruder detects changes in the melt index much 

later than the extruder would. 

2.2 Variable correlation and lags

All of the variables shown were correlated with the 

polymer’s melt index. It has been shown(McAuley 

and MacGregor 1991) that the melt index has 

significant log-linear relationship with plant process 

variables such as temperature and pressure. The same 

relationship was noticed in the data reported here and 

therefore log-transformed variables were used in the 

analysis. Table 1 shows a summary of the correlation 

of the extruder variables with the log of the melt 

index. 

The variable used for fitting and validation of the soft 

sensor was the online rheometer. It was expected that 

these readings would be delayed. Thus a delay 

estimation algorithm and cross-validation via visual 

inspection were used to estimate the time delays 

between the variables. The lags between the extruder 

variables and the online rheometer are also shown in 

Table 1. 

Table 1 Extruder variables correlation and lag with 

log of rheometer measured melt index

Variable Correlation Lag (min.) 

PI-01 -0.742 13.92 

PI-02 -0.799 13.50 

PI-03 -0.881 12.08 

PI-04 -0.712 10.08 

PI-05 -0.917 10.00 

PI-06 -0.981 9.92 

TI-01 -0.887 7.83 

TI-02 -0.705 5.33 

TI-03 -0.947 4.91 

SI-01 0.922 10.25 

II-01 -0.863 10.33 

The correlation between the variables was found 

using standard correlation analysis. 

The data set used to calculate the correlation 

comprised 16340 one minute samples form fifteen 

(15) different grades with melt indices ranging from 

1.7 to 870 gm/min. 

Figure 3 shows one of the plots used to determine the 

time delay between the signals based on visual 

inspection. The most significant deviations in the data 

(large peaks) were used to visually confirm the time 

delay. 
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Figure 3 – Visual inspection plot for time delay  

The delay estimation algorithm used was defined by 

(Moddemeijer 1988). It is a relatively old algorithm, 

it is available online and it was simple to use. The 

algorithm requires no apriori information about the 

signals; however, it assumes the signals to be 

stochastic and stationary. These assumptions are not 

fully true for the signals being considered here. As 

mentioned before, the extruder variables drift with 

time. However, over relatively short times, they can 

be considered stationary. This method involves 

splitting the two signals into a past and future vector. 

Then the capture of information between the 

concatenated past and future vectors is calculated. A 

function which continuously splits the data series into 

the past and future vectors is used to find which split 

gives the maximum common information. The 

capture of information is stored in a variable pair 

called the criterion. The maximum value of the 

criterion gives the number of sample times which 

correspond to the estimated time delay between the 

two signals. 

Figure 4 shows the criterion plotted against sample 

intervals for two of the extruder variables (sample 

time = 5 seconds).  
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Figure 4 – Delay estimation algorithm for two 

extruder variables 
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2.3 Soft sensor models

The selection of plant variables which comprise the 

soft sensor was based on the correlation with the melt 

index, time delays and lack of disturbances. The main 

disturbances affecting the extruder variables are the 

screen pack fouling and cooler fouling. The typical 

disturbances caused by these are shown in Figure 5. 

This figure clearly shows that a screen pack change 

causes a significant change in the operating pressure 

for PI-05. A cooler cook event causes a change in the 

pressure and melt index, however the steady state 

melt index after the event is the same while the 

corresponding steady state pressures are not. 
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Figure 5 – Disturbances effecting extruder variables 

The most important variables were chosen based on 

the physics and rheology of the extruder and the 

correlation. As described, the melt index range for 

products produced by this facility is very large. 

Initially, one simple model was developed which 

covered the entire product range. However, during 

events such as cooler cooks and grade changes, the 

melt index for each grade showed an exaggerated 

change. Thus, a speed and temperature modified 

model was developed. 

The Basic Model. This model was built using least 

squares regression.  It was based on Equation(1). 

MI f P  (1) 

where 

MI  is the melt index. 

P  is the pressure at PI-06 (the variable with the 

highest correlation). 

expMI a b P  (2) 

Equation(2) was implemented, where a , b  and 

were constants found using regression. This was 

found useful to give an idea of the relative behaviour 

of the melt index (increasing or decreasing and rate of 

change). However, the absolute value was found to 

contain errors; due to the speed of the extruder being 

controlled by the hopper level controller and the 

fouling of the coolers and screen pack. 

S and T Compensated Model. This model was based 

on equation 2 but includes some more information 

about the physics of the extruder. Equation(3) shows 

the basis of the model. 

, ,r r r rT S T SMI f P   (3) 

where 

,r rT SMI  is the melt index at a reference temperature, 

rT  and reference speed rS .

,r rT SP  is the pressure at a reference temperature, rT

and reference speed rS .

In this application the extruder can be viewed as a 

pseudo melt indexer. With a typical melt index 

instrument, melt index is measured by applying a 

fixed pressure to the polymer at a fixed temperature. 

For the melt index measurement, the polymer is 

forced through a die, and the weight of polymer 

which flows through the die in a fixed time interval is 

the melt index. With the extruder, the pressure 

applied to the polymer depends on the extruder speed 

and temperature. This gives the relationship shown in 

Equation(4). 

, ,T S T SMI f P  (4) 

where 

,T SMI  is the melt index at a operating temperature, 

T  and operating speed S .

,T SP  is the pressure at a operating temperature, T

and operating speed S .

This equation can be modified to give Equation(5); 

which compensates for the change in temperature and 

speed. 

, , ( ) ( )
r rT S T S r rMI f P f T T f S S (5) 

Equation(5) reports a melt index similar to that 

measured by the rheometer.  

The relationships internal to these functions are not 

exactly known, but based on the high correlations 

observed, a relationship was assumed. The 

relationship which included the speed compensation 

was of the form shown in Equation (6). 

, exp
rT SMI a b P c d S  (6) 

This was expressed in the form shown in equation(7).  

, exp
rT SMI a b S c SP d P (7) 

The relationship shown in equation(8) was found 

after the initial regression. 

 (8) 

Thus equation(9). 

, exp
rT S

S
MI a b S c d P

P
(9) 

Where , , ,a b c d and  are constants fit using least 

squares regression. 

A relationship between the melt index and 

temperature (TI-03) was found by manipulation of the 
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variables and observing the correlation. The 

relationship found is shown in equation(10). 

2

1
MI

T
 (10) 

Thus equation(9) was extended to equation(11) which 

included both speed and temperature compensation. 

, 2

exp

r rT S

S
a b S c d P

P
MI

T
(11) 

The model with and without the temperature 

compensation are shown in Figure 6. It was noticed 

that without the temperature compensation there was 

a significant overshoot during the dynamic periods 

(such as cooler cook events and grade transitions) and 

the model was more susceptible to the fouling errors. 

The temperature compensation alleviated the majority 

of the overshoot and some of the offset due to 

fouling; this is as shown during a typical cooler cook 

in Figure 6.  
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Figure 6 – Cooler Cook Event 

The model was modified during the fitting process. 

This included lagging the independent variables to 

take advantage of the time delay information found 

previously. It was found that use of the lagged data 

did not give any significant gains. Upon 

implementation it was found using the most current 

data available for all independent variables gave a 

value for the melt index nine (9) minutes ahead of the 

online rheometer. 

Figure 7 shows the validation data for a dynamic run. 

It can be seen the model captured the dynamics of the 

melt index change well. 

Figure 8 shows the validation data for the model. It 

can be seen the model showed an excellent fit for the 

full range of product produced by the plant (these 

products were produced over a four month period). 
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Bias Updating of the Model. The compensated model 

built was found to operate well for a certain period of 

time and at certain grades, then drifting occurred. 

This was attributed to the significant changes in the 

extruder operating conditions due to the fouling. In 

order to compensate for this characteristic of the 

process a bias updating scheme for the model was 

implemented. The bias was applied to the constant a
in equation(11). Equation(12) shows how the new 

Calca  was found. 

2lnCalc Avg

S
a MI T b S c d P

P
 (12) 

The bias which is calculated in equation(13) was 

stored in the historian. 

Calcbias a a  (13) 

Equation(14) shows how Calca  was used to calculate 

the new melt index. 

2

exp Calc

Bias

S
a b S c d P

P
MI

T
(14) 
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Figure 9 shows the flow sheet of the procedure 

developed for implementing the bias updating 

scheme. 
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Figure 9 – Bias updating flowsheet (30 min. 

execution period) 

3. CONCLUSION 

A soft sensor model for the melt index of EVA 

copolymer was built and has been implemented at AT 

Plastics Inc (Edmonton, Canada). This soft sensor 

was built at different stages to handle different 

problems. The soft sensor used variables from the 

plant extruder (pressure, speed and temperature) to 

calculate the melt index. Biased nonlinear least 

squares regression was used to calculate the 

parameters in the soft sensor model. To compensate 

for drifts due to fouling, bias correction was added. It 

was also found that it would require some time for the 

parameters in the bias to update after the plant had 

gone through a grade transition or a cooler cook.  

The main goal of this soft sensor was to have a 

reliable reading for the melt index during the grade 

transitions to build a model of the process. The 

compensated model with bias updates fits this 

application well. The next step will be to use this soft 

sensor to model the plant and produce optimal grade 

transitions and compare them with those produced by 

a first principles model. 
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