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Abstract: Models of type 1 diabetes with accurate prediction capabilities can
help to achieve improved glycemic control in diabetic patients when used in a
monitoring or model predictive control framework. In this research, empirical
models are identified from a simulated physiological model. ARX and Box–Jenkins
models of various orders are investigated and evaluated for their description of
calibration and validation data that are characteristic of normal operation. In
addition, model accuracy is determined for abnormal situations, or “faults.” The
faults include changes in model parameters (insulin sensitivities), an insulin pump
occlusion, underestimates in the carbohydrate content of meals, and mismatches
between the actual and patient–reported timing of meals. The models describe
normal operating conditions accurately, and can also detect significant faults.
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1. INTRODUCTION

Diabetes mellitus is a disease characterized by
insufficient production of insulin by the pancreatic
β-cells, leading to prolonged elevated concentra-
tions of blood glucose (Ashcroft and Ashcroft,
1992). Type 1 diabetics in particular rely on ex-
ogenous insulin for survival. This exogenous in-
sulin typically enters the body in the subcuta-
neous tissue. A slow, constant or basal infusion
helps the body metabolize glucose in times of
fasting. Rapid or bolus injections complement the
basal and are administered coincidentally with a
meal to help the body metabolize large loads of
carbohydrates (CHO).

Over the past few decades, many dynamic models
have been formulated to describe glucose–insulin
interactions in type 1 diabetes. The development
of such models is relevant to a model predictive
control (MPC) approach to diabetes, in which
past outputs (i.e., glucose measurements), past
inputs (i.e., insulin infusion rates), and model
predictions are used to determine the appropri-
ate insulin infusion rate at the current sampling
instant (Bequette, 2005).

Physiological diabetes models include the widely
used “minimal model” of Bergman et al. (1981),
which was developed to estimate insulin sen-
sitivity from an intravenous glucose tolerance
test. The model describes glucose–insulin dynam-
ics with only three differential equations and
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few parameters. This simplicity, however, begets
many limitations. For instance, the original model
excluded exogenous insulin infusion as an in-
put. Although it has been easily altered to in-
clude this input (Parker and Doyle III, 2001),
the modified minimal model still does not in-
clude the dynamics of subcutaneous insulin in-
fusion. A more recent model by Cobelli et al.
(1998) is significantly more detailed than the
model of Bergman et al. (1981), but its details
are thus far unpublished. A physiologically rig-
orous 19–state model was developed by Sorensen
(1985) to describe glucose–insulin pharmacoki-
netics/pharmacodynamics, and includes compart-
ments representative of various bodily organs.
Shortcomings of this model include its inabil-
ity to capture the realistic hyperglycemic ex-
tremes characteristic of type 1 diabetes (Lynch
and Bequette, 2002). A model developed by Hov-
orka (Hovorka et al., 2002; Hovorka et al., 2004)
presents an attractive tradeoff between simplicity
and accuracy. This model is the focus of the cur-
rent research.

In addition to physiological diabetes models, em-
pirical diabetes models have also been reported,
although to a much lesser extent. Autoregressive
models have been used to predict the next glucose
value (ten minutes ahead) from previous glucose
measurements (Desai et al., 2002). The novelty of
the current paper is that different types of models
are considered (namely ARX and Box–Jenkins)
and only “infinite–step ahead” model predictions
are evaluated. That is, the empirical models pre-
dict future outputs based only upon the process
inputs and the previous empirical model outputs;
thus, the actual outputs (from the Hovorka model)
are not used to update the empirical model pre-
dictions.

2. PHYSIOLOGICAL MODEL

The diabetes model considered in this research is
the model reported by Hovorka et al. (2004) and
extended by Wilinska et al. (2005). The model in-
puts are the rate of subcutaneously infused insulin
lispro (fast acting insulin), and meal amount and
time. The output is the plasma glucose concentra-
tion. The model is comprised of three subsystems
representing plasma glucose, subcutaneous and
plasma insulin, and insulin action. The glucose
subsystem is divided into two compartments, a
plasma compartment and a “non–accessible” com-
partment; subcutaneous insulin absorption is also
partitioned into two compartments. The insulin
action subsystem takes into account the physi-
ological effects of insulin on glucose transport,
removal, and endogenous production. These in-
sulin “actions” manifest themselves in the form of

time–varying rate constants corresponding to each
of these metabolic processes. Model “constants”
were taken to be those quantities which were dif-
ficult to identify, while model “parameters” were
a priori identifiable. Nonlinearity arises in the
model not only from the insulin actions but also
from physiological saturation effects. For example,
renal glucose excretion is zero below a certain
threshold (160 mg/dL) and insulin–independent
peripheral glucose uptake is constant above, and
proportional to glucose concentration below, an-
other threshold (80 mg/dL). The model also in-
cludes gut absorption dynamics which describe
the appearance of glucose in the blood resulting
from a meal. The model’s subcutaneous insulin
absorption subsystem includes parallel fast and
slow channels as well as a degree of insulin degra-
dation at the injection site.

Figure 1 shows the steady–state map of plasma
glucose concentration (G) and insulin infusion
rate (u) predicted by the Hovorka model for
three different patient weights. Three operating
regions are evident in the model. In Region 1
(G ≥ 160 mg/dL), renal glucose excretion is
present and proportional to G; in Regions 2 and 3
(G ≥ 80 mg/dL), non–insulin–dependent glucose
uptake is constant; and in Region 3 (G < 80
mg/dL) non–insulin–dependent glucose uptake is
proportional to G. Figure 1 indicates that the
model produces negative glucose concentrations
for high insulin infusion rates. Although negative
glucose concentrations are unrealistic, the model
is intended to be operated at physiological glucose
levels, e.g., 40 mg/dL < G < 400 mg/dL.
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Fig. 1. Steady–state G–u map for three patient
weights. Regions 1-3 represent different oper-
ating regions for the model.

Transient responses to open–loop changes in the
insulin infusion rate u were simulated in order
to characterize the insulin–to–glucose dynamics of
the Hovorka model. Figure 2 shows the responses
of G to step changes in u (i.e., basal changes)
and an impulse in u (i.e., a bolus). The step
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and impulse magnitudes were chosen so that the
process operated entirely within Region 2 (see
Figure 1), the most physiologically significant
region. Figure 2 indicates that ∼75 h are required
for G to reach steady state in response to the
step decrease in u, but only about half this time
is required to reach steady state after the step
increase in u.
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Fig. 2. Transient glucose responses for a 75 kg
patient to open–loop step (basal) and impulse
(bolus) inputs in u. Note broken scale in the
input plot.

Transient responses to a meal disturbance were
simulated in order to characterize the postprandial
(i.e., post–meal) glucose concentration dynamics.
Figure 3 shows two responses to a 40 g CHO meal:
an open–loop response for which no counteracting
bolus is delivered, and the response when an
appropriate bolus is delivered coincident with
the meal. The rate of appearance of glucose in
the blood from the meal UG is the prediction
of the model’s gut absorption subsystem. Since
using impulse inputs for both boluses and meals
could cause identifiability problems, the input for
a meal is considered to be UG. The insulin–to–
carbohydrate ratio for the bolus was determined
by trial and error such that the bolus significantly
reduced the postprandial peak and returned G to
its steady–state value quickly, without significant
undershoot.

2.1 Normal Operation

In order to simulate days of normal operation, cer-
tain assumptions had to be made regarding what
is “normal.” All runs simulated a 24 h period,
starting at 8 AM and ending the following day at
8 AM. The sampling period was 5 min, a realistic
interval for the current generation of continuous
glucose sensors. Gaussian noise was added to the
glucose measurement, with a standard deviation
of σ = 3.3 mg/dL. Breakfast, lunch, and dinner
were administered at 8 AM, 12 PM, and 6 PM,
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Fig. 3. Transient glucose responses for a 75 kg
patient to meal input UG, with and without
a coincident bolus.

respectively. All normal runs used the nominal
insulin sensitivities reported by Hovorka et al.
(2002) and Hovorka et al. (2004). The patient
weight was 75 kg. Three “normal” datasets were
simulated corresponding to an average meal day
(NA), a light meal day (NL), and a heavy meal day
(NH). In the light meal day, the simulated patient
consumes 50% less CHO in each meal compared
to the average meal day; in the heavy meal day,
the patient consumes 50% more CHO in each meal
compared to the average meal day. The insulin–
to–carbohydrate ratio was constant for each meal,
and was determined as described above.

2.2 Faults

The four realistic “faults” in Table 1 were simu-
lated, representing changes in model parameters
(insulin sensitivities), an insulin pump occlusion,
patient underestimates of the amount of CHO
consumed in meals, and mismatches between the
actual timing of meals and that which the simu-
lated patient reports to a hypothetical monitor-
ing system. The same Gaussian noise level, meal
times, and patient weight were used in the fault
datasets as in the normal datasets.

Table 1. Fault descriptions.

Fault Description

F1 50% reduction in insulin sensitivities

F2 100% occlusion of insulin pump for
one hour (not during a meal)

F3 50% underestimate in CHO content of
lunch and dinner

F4 15 min mismatch between actual and
patient–reported lunch and dinner times

For the F1 fault simulation, an appropriate basal
rate and insulin–to–carbohydrate ratio were recal-
culated to compensate for the decreased insulin
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sensitivities. For F2, the basal insulin infusion
rate was completely stopped for one hour, from
12 AM to 1 AM. The u input data used to gen-
erate the empirical model prediction, however, do
not include this hour–long cessation in the basal.
Here the assumption is that an online monitoring
system would not be aware of the occlusion, and
thus would be challenged to infer it from the
available input–output data. Faults F1 and F2
were generated using the meal magnitudes for
a normal, average meal day. For F3, lunch and
dinner were two times larger than average and
were taken with coincident boluses appropriate
for the average–sized meals (i.e., the patient un-
derbolused for lunch and dinner). Since the pa-
tient underestimated these actual meal amounts
by 50%, both the u and UG input data used to
generate the empirical model prediction for F3
are the same as for a normal average meal day.
For fault F4, the lunch and dinner boluses were
taken at their nominal times, but the meals were
taken 15 min late (i.e., after the boluses). Again,
the assumption here is that an online monitoring
system would not be aware of these mismatches in
meal timing, and thus would be challenged to infer
them. Therefore, the input data used to generate
the empirical model prediction for F4 were the
same as for a normal average meal day.

3. EMPIRICAL MODELS

The two types of linear dynamic models investi-
gated in this research are autoregressive models
with exogenous input (ARX) and Box–Jenkins
(BJ) models. The MATLAB System Identification
Toolbox (Ljung, 2005) was used to identify the
models. The ARX model is a difference equation
in which the current output depends on previous
outputs and inputs,

A(q−1)G(t) = B1(q−1)u(t)

+ B2(q−1)UG(t) + ε(t)
(1)

where q−1 is the backward shift operator (i.e.,
q−1G(t) = G(t − 1)). A is a scalar polynomial in
ascending powers of q−1, starting with q0 = 1 and
B1 and B2 are scalar polynomials in ascending
powers of q−1, starting with q−1. The ε term rep-
resents the Gaussian process noise. Low–order and
high–order ARX models were identified from the
Hovorka model simulation data. The “low–order”
models were second order in the autoregressive
and exogenous inputs; the “high–order” models
were chosen according to the Akaike information
criterion (AIC), which chooses model orders based
on a compromise between model simplicity and
model accuracy.

The BJ model is a transfer function model that
models both deterministic inputs (i.e., u and UG)
and stochastic inputs (i.e., the noise ε) according
to

G(t) =
B1(q−1)
F1(q−1)

u(t)

+
B2(q−1)
F2(q−1)

UG(t) +
C(q−1)
D(q−1)

ε(t)
(2)

where B1, B2, C, D, F1, and F2 are scalar poly-
nomials in ascending powers of q−1, starting with
q−1. Again, low–order and high–order BJ models
were identified from Hovorka model simulation
data. The “low–order” BJ models were first order
in all inputs while the “high–order” models were
fourth order.

For the identification studies, deviation variables
were used. Because the physiological model does
not account for the diurnal variations in insulin
sensitivities, the basal insulin infusion rate was
constant for the entire day. Since this steady–state
infusion rate was subtracted in forming deviation
variables, the input u consisted only of impulses
(i.e., boluses). The steady–state value of G = 80
mg/dL was subtracted from the output to give the
deviation variable ∆G.

4. SIMULATION RESULTS

Model accuracy for both calibration and valida-
tion data was quantified by the standard coeffi-
cient of determination,

R2 =

(
1 −

∑N
i=1(Gi − Ĝi)2∑N
i=1(Gi − Ḡ)2

)
× 100% (3)

where N is the number of samples, G is the output
simulated by the Hovorka model, Ĝ is the output
predicted by the identified model, and Ḡ is the
average of the output simulated by the Hovorka
model.

Low–order and high–order ARX and BJ models
were identified from each of the three datasets
representative of normal operation (i.e., NA, NL,
and NH). Each of the twelve identified models
was validated on the other two normal datasets.
Figure 4 compares the predictions of the high–
order models identified from NA with all three
normal datasets. The corresponding R2 values are
listed in Table 2 and range from 46-77%.

The R2 values of the high–order ARX and BJ
models for the three normal datasets are shown
in Table 2. Both types of models predict their
calibration data accurately (R2

cal ≥ 66%, R̄2
cal =

74.5%) In general, the BJ models consistently
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Fig. 4. Comparison of Hovorka model responses
and predictions of high–order models identi-
fied from NA. Top: calibration data; middle
(NL) and bottom (NH): validation data. BJ:
thin solid line; ARX: dashed line. Note differ-
ent scales in the y–axes.

explain more variability in the data than the
ARX models. The worst prediction occurs when
the ARX model identified from NL is validated
on NH . Here R2 = 0, implying that the model
prediction is no more accurate than the average
value of the simulation data.

Table 2. R2 values of predictions of
high–order models identified from NA

for all normal datasets. Boldface values
denote results for calibration data.

Day Model NA NL NH

NA ARX 66 46 57

BJ 77 57 63

NL ARX 32 74 0

BJ 52 78 42

NH ARX 62 27 74

BJ 71 68 78

The R2 values of the low–order ARX and BJ
models for the three normal datasets are shown
in Table 3. The low–order model fits are compa-
rable to those of the high–order models (R̄2

high =
56.9; R̄2

low = 59.7).

The models identified from the NA dataset were
evaluated on the fault datasets simulated by the
Hovorka model. The predictions of the identified
high–order models are shown in Figure 5, and the
corresponding R2 values are listed in Table 4. Very
low R2 values imply that the identified model is
not accurate and that an abnormal situation (i.e.,

Table 3. R2 values of predictions of low–
order models identified from NA for all
normal datasets. Boldface values denote

results for calibration data.

Day Model NA NL NH

NA ARX 66 43 58

BJ 71 70 79

NL ARX 38 70 7

BJ 62 78 58

NH ARX 61 27 72

BJ 71 66 80

fault) has occurred. The high–order ARX model
easily detects F3, while the high–order BJ model
detects F1 and F3. Although both identified mod-
els still explain ∼50% of the variance in F2,
these R2 values are significantly lower than the
corresponding calibration values (see Table 2). It
should also be noted that most of the unexplained
variance comes in the last ∼6 h of the F2 run,
i.e., after the pump occlusion occurs at 12 AM. In
an online monitoring situation, recent data would
typically be weighted more heavily, and this fault
would likely be detected soon after it occurs. Fi-
nally, F4 goes undetected, illustrating a degree of
insensitivity of the identified models. A reasonable
amount of insensitivity is advantageous because
the detection of an insignificant fault situation is
undesirable.
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Table 4. R2 values of predictions of all
models identified from NA, evaluated

for the fault datasets.

Order Model F1 F2 F3 F4

High ARX 53 48 -20 61

Order BJ -63 51 -2 64

Low ARX 54 47 -21 60

Order BJ 68 52 61 63

The R2 values of the low–order ARX and BJ
models identified from NA evaluated on the four
fault datasets are also shown in Table 4. The R2

values are significantly higher than those of the
high–order models (R̄2

high = 11.2; R̄2
low = 43.5).

5. CONCLUSIONS

Accurate linear dynamic models have been iden-
tified from a simulated physiological diabetes
model. The simulations represented realistic con-
ditions by incorporating measurement noise, rea-
sonable meal times and magnitudes, insulin–to–
carbohydrate ratios, and faults. The high–order
ARX and BJ models identified from the normal
data provide accurate predictions of the normal
datasets. The low–order model predictions of the
normal datasets are comparable to those of the
high–order models.

The models identified from NA were applied to
the four fault datasets to determine whether a dis-
tinction could be made between normal operation
and faults. Two of the four faults (F1 and F3)
were detected readily by the high–order models.
F2 was more difficult to detect by the high–order
models, in part because the fault occurred near
the end of the run. Finally, F4 went undetected
due to the insignificance of this fault. The low–
order models developed from NA largely failed to
distinguish between normal operation and faults.
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