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Abstract: In this paper the problem of parameter identification for the Monod
model is considered. As known for a long time, noisy batch measurements do
not allow unique and accurate estimation of the kinetic parameters of the Monod
model. Techniques of optimal experiment design are, therefore, addressed to design
informative experiments and improve the parameter estimation accuracy. During
the design process, practical feasibility has to be kept in mind. In this paper it is
demonstrated how a theoretical optimal design can successfully be translated to
a feasible optimal design. Both design and validation of informative fed batch
experiments are illustrated with a case study that models the growth of the
nitrogen fixing bacteria Azospirillum brasilense. Copyright c©2006 IFAC
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1. INTRODUCTION

When modeling (bio)chemical processes, some
limitations which will hamper the model identifi-
cation process, have to be kept in mind (Bernaerts
and Van Impe, 2004). To overcome these prob-
lems, an accurate design of the experiments is
needed. Experimental data should contain suf-
ficient information in order to enable correct
model structure characterization, and accurate
and unique parameter estimation. It has been
demonstrated that the use of optimal experiment
design for parameter estimation can contribute to
an improvement of the parameter estimation ac-

curacy (e.g., Walter and Pronzato, 1997; Versyck
and Van Impe, 1999).

Azospirillum brasilense belongs to a group of bac-
teria that exert beneficial effects on plant growth.
One of the factors responsible for the plant growth
promotion is the production of phytohormones,
e.g., the auxin indole-3-acetic acid (Baldani et
al., 1983). This characteristic opens perspectives
to exploit the nitrogen fixing bacteria of the genus
Azospirillum as alternative for, or supplement to
chemical fertilization. Therefore, a quantitative
analysis of growth and phytohormone produc-
tion by Azospirillum brasilense is very interesting
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(Smets et al., 2004). In this paper the modeling
of growth and more specifically the estimation of
the Monod kinetic parameters, is addressed.

In this case study the feed rate profile of a fed
batch is optimized to enable accurate estimation
of the growth model parameters. The designed
optimal experiment requires advanced control to
be realized in practice. The case study illustrates
how, in a second stage, a trade-off can be found
between maximum information content and prac-
tical feasibility of the experiment.

The structure of this paper is as follows. First, the
material and methods and the theoretical back-
ground of optimal experiment design are intro-
duced in Section 2. In Section 3 the implementa-
tion of optimal experiments is discussed. Finally,
Section 4 summarizes the major conclusions.

2. MATERIALS AND METHODS

2.1 Bioreactor experiments

Experiments were performed in a computer con-
trolled BioFlo 3000 benchtop fermentor (New
Brunswick Scientific, USA) with an autoclavable
vessel of 1.25 to 5L working volume. 100 mL of
a preculture containing Azospirillum brasilense
was transferred to the vessel containing a mini-
mal malate medium (MMAB) (Vanstockem et al.,
1987). L-malate is provided as sole carbon source.
PID cascade controllers ensure that the fermenta-
tion temperature is kept constant at 30◦C, pH at
6.3 and the dissolved oxygen concentration at 3%
(micro-aerobic range).

Culture media samples were removed at regular
intervals. Cell density was obtained through mea-
surement of optical density (OD) at 600 nm (Gen-
esis 10S, Thermo Spectronic). L-malate was mea-
sured using test kits from Roche (R-biopharm,
Germany).

2.2 Growth model

The evolution of biomass CX [OD] and substrate
concentration CS [g/L] in a fed batch reactor
can be described by following mass balance type
equations:

dCX

dt
= µ · CX − U

V
· CX

dCS

dt
=−σ · CX +

U

V
· (CS,in − CS) (1)

dV

dt
= U

with

µ = µmax · CS

CS + KM
(2)

σ =
µ

YX/S
+ m (3)

with V [L] the volume of the liquid phase and
CS,in [g/L] the substrate concentration in the
volumetric feed rate U [L/h]. µ [h−1] is the specific
growth rate and is specified by the Monod equa-
tion (2) with µmax [h−1] the maximum specific
growth rate and KM [g/L] the half-saturation
constant. The relation between specific growth
rate µ [h−1] and specific consumption rate σ
[(g/(OD·L))·h−1] is given by the linear law (3).
YX/S [(OD·L)/g] is a yield coefficient of biomass
over substrate and m [(g/(OD·L))·h−1] represents
a maintenance factor. In this case study, mainte-
nance is, in a first stage, neglected (m=0).

2.3 Parameter estimation

The identification cost imposed for parameter
estimation is the sum of squared errors SSE:

SSE =
n∑

i=1

(yexp(ti) − ymodel(ti))2 (4)

with ymodel(ti) the model predictions, yexp(ti) the
experimental observations and n the number of
samples.

As m is set equal to zero, the yield coefficient
YX/S can be estimated separately by eliminating
the specific growth rate from the growth model:

dZ

dt
=

U

V
· (YX/S · CS,in − Z) (5)

with
Z = YX/S · CS + CX

This leaves two growth parameters to be esti-
mated, i.e., KM and µmax, together with the
initial conditions CX(0) and CS(0).

The implemented identification routines for model
parameter identification are the E04UCF routine
from the NAG library (Numerical Algorithms
Group) in Fortran and the lsqnonlin routine in
Matlab (The Mathworks Inc., Natick). Numerical
integration is performed with the NAG-routine
D02EJF in Fortran.

2.4 Optimal experiment design

The information content of an experiment, with
respect to parameter identification, can be eval-
uated through the Fisher information matrix F
(e.g., Walter and Pronzato, 1997):
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F �
∫ tf

0

(
∂y
∂θ

)T

Q
(

∂y
∂θ

)
· dt (6)

The main components of the Fisher information
matrix F are the model output sensitivities ∂y

∂θ ,
and the uncertainty of the measurements. The
latter is represented by the weighting matrix Q,
which is set equal to the inverse of the measure-
ment error covariance matrix. The model output
sensitivities reflect the sensitivity of the model
output y to small variations of the parameters θ.

Depending on the requirements imposed by the
application, a specific scalar function of F is used
as performance index for optimal experiment de-
sign. Different design criteria are available and the
choice of the criterion will influence the resulting
design (Walter and Pronzato, 1997; Vanrolleghem
and Dochain, 1998). In this case study, the mod-
ified E-criterion is selected. This criterion aims
at the minimization of the condition number of
F, i.e., the ratio of the largest to the smallest
eigenvalue of F.

Λ(F) =
λmax(F)
λmin(F)

(7)

The objective is to have eigenvalues as close as
possible to each other. When the condition num-
ber reaches its minimal value, i.e., Λ(F) = 1,
the contour lines of the cost surface for a two
parameter problem will be circular. Such highly
informative experiment allows unique parameter
estimation. Values of Λ(F) greater than 1 induce
ellipsoid contour lines.

Given the nonlinear model structure, the design
also depends on the nominal parameter values,
i.e., the initial guess for the unknown parameters,
used in the optimization. The closer the nominal
values approach the true parameter values, the
better the obtained design. Optimal experiment
design is, therefore, an iterative procedure. After
evaluation, the design is implemented. The result-
ing experimental data and identified parameters
are used as a basis for a next round of optimal
experiment design.

3. RESULTS AND DISCUSSION

3.1 Parameter identification from batch data

Nihtilä and Virkkunen (1977) showed that the
parameters of the Monod kinetics cannot be
uniquely identified from noisy batch measure-
ments. This is illustrated in Figure 1. The up-
per plot depicts the experimental data of a pre-
liminary batch experiment together with one of
the many possible solutions of the parameter es-
timation problem. The identification problem is

illustrated in the lower plot. Joint and individual
uncertainty are very large for the kinetic para-
meters KM and µmax. The contour plot reveals
a valley with different parameter combinations
which result in an equally low cost. This means
that a change in one of the parameters can be
compensated by a change in the other parameter.

To overcome this problem, new experiments need
to be designed which are more informative in
the sense of accurate parameter estimation. Tech-
niques of optimal experiment design for parameter
estimation are addressed to tackle this problem.
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Fig. 1. Model parameter identification from a
batch experiment. Upper plot: experimental
data (∗,◦) and model predictions (−) for
biomass and substrate concentrations. Lower
plot: contours of equal identification cost
(SSE) as function of the model parameters
KM and µmax. The bold line is the 95% joint
confidence region, the dashed lines depict the
95% individual confidence intervals on KM

and µmax.

3.2 Feeding profile

The optimal control problem is to find the best
possible admissible feed rate profile U(t) with
respect to the quality of the estimates for the
Monod parameters KM and µmax. Van Impe et
al. (1995) formulated following conjecture:

A feed rate strategy which is optimal
in the sense of process performance,
is an excellent starting point for feed
rate optimization with respect to esti-
mation of those parameters with large
influence upon process performance.
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A feeding profile optimal for process performance
is one in which substrate concentration is kept
constant from the beginning. For unique parame-
ter estimation an extra perturbation is required,
which can be achieved by preceding the singular
feeding phase by an initial batch phase (Versyck
and Impe, 1999). The structure of this feeding
profile is depicted in Figure 2 (dashed line). In
the feeding phase the feed rate U(t) is given by a
feed forward control law of the form:

Using(t) =
σCXV

CS,in − C∗
S

(8)

with CS,in the limiting substrate concentration in
the feeding solution and C∗

S the constant substrate
concentration aimed at during the feeding phase.
There are two degrees of freedom in this feed rate
optimization problem, i.e., the initial substrate
concentration CS(0) and the substrate concentra-
tion during the feeding phase C∗

S .
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Fig. 2. Singular (- -) and 3-step (−) feed rate
profile for optimal growth parameter identi-
fication.

3.3 optimization of the feeding profile

The parameters obtained from an initial batch
experiment are used as nominal values for the
design of a new and more informative experiment.
Different combinations of CS(0) and C∗

S were
found which give a condition number equal to
1. These profiles entail, however, some important
practical problems.

A first problem are the values found for CS(0)
and C∗

S . The obtained concentrations are very low
and hard to realize in practice. For fixed values
of CS(0), the optimal C∗

S and corresponding con-
dition number were computed. A higher concen-
tration for CS(0) yields a higher C∗

S . This way a
range of designs with suboptimal (CS(0),C∗

S) com-
binations was defined, which are still informative
enough with regard to parameter identification.

As a second step to increase practical feasibility,
the time-varying feeding profile was simplified by
replacing the singular feeding phase by steps of
constant feed rate. This step approximation is
done in such a way that the volume added per
step of feeding is the same as for the time-varying
feeding profile in that period:

Ucte(t, θ) =

∫ ti+1

ti
using(t, θ)dt

ti+1 − ti
(9)

Profiles with three as well as with one step were
computed. An example of a feed rate profile with
three steps is illustrated in Figure 2 (solid line).
For this example there are two degrees of freedom
to be optimized, i.e., the time points for switching
from one feed rate to the next (t1 and t2). A
profile with one step of constant feeding has only
one degree of freedom, i.e., the time instant tf at
which the feeding stops. The resulting condition
numbers for the different optimal and suboptimal
feeding profiles are listed in Table 1.

Table 1. Overview of different designs.

Feeding profile Condition number
Λ(F)

Unconstrained singular profile

CS(0)= 0.4340 g/L 1.00
C∗

S= 0.1702 g/L

Constrained singular profile

CS(0)= 3.0167 g/L 50.29
C∗

S= 0.9463 g/L

Simplifications of the constrained singular profile

3 steps:
t1= 9.76 h 62.13
t2= 14.07 h

1 step:
tf= 16.35 h 321

with CS,in = 50 g/L and nominal parameter values

µmax=0.421 h−1, KM=0.439 g/L, YXS=0.777 (OD·L)/g

To evaluate the loss of information content through
simplification of the feed rate profile, the different
optimal and simplified designs were extensively
tested through identification of the growth para-
meters on simulated noisy data. All four designs
listed in Table 1 delivered satisfying results con-
cerning accurate parameter identification. There-
fore, the most simple design with regard to practi-
cal feasibility, i.e., the design with only one step of
constant feeding, was selected for implementation.

3.4 Implementation and validation

The results presented in this section were obtained
in a second round of optimal experiment design.
The results of the performed fed batch experiment
are illustrated in the upper plot of Figure 3 and
the identified growth parameters are summarized
in Table 2. A malate solution of 10 g/L was
added to the reactor with a feed rate of 0.07
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L/h starting three hours after the start of the
experiment. The period of feeding is represented
by the vertical dashed lines on the plot. The lower
plot depicts the contour plot together with the
95% individual confidence intervals and 95% joint
confidence region for µmax and KM . The 95%
joint confidence region now forms a closed ellips.
Comparing the confidence intervals with the ones
calculated for the batch experiments (see Figure 1,
lower plot), confirms that the estimation accuracy
of the parameters KM and µmax is significantly
improved.

The predictive quality of the obtained model pa-
rameters was subsequently evaluated by compar-
ing simulations with the identified model parame-
ters and experimental data 1 . Hereto, a new fed
batch experiment with a different feeding profile
was performed. The feed rate for this experiment
was also 0.07 L/h, but the period of feeding was
shifted. Additionally, the data of the initial batch
experiment were used for evaluation. These vali-
dation results are depicted in Figure 4.
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Fig. 3. Model parameter identification from an in-
formative fed batch experiment. Upper plot:
experimental data (∗,◦) and model predic-
tions (−) for biomass and substrate concen-
trations. Lower plot: contours of equal iden-
tification cost (SSE) as function of the model
parameters KM and µmax. The bold line is
the 95% joint confidence region, the dashed
lines depict the 95% individual confidence
intervals on KM and µmax.

1 The initial conditions (CX(0) and CS(0)) have been
reestimated for each simulation.

Table 2. Parameter values for the model
(1,2,3) with and without maintenance.

no maintenance with maintenance

YX/S 0.4905 0.5468

µmax 0.2733 0.2961
KM 1.441·10−2 4.163·10−2

mS - 1.445·10−2

SSE 0.1626 0.1362
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Fig. 4. Experimental data (∗,◦) and simulation
of the growth model (–) on batch (upper
plot) and fed batch experiments (lower plot).
Parameters are taken from Table 2.

3.5 Remarks concerning the growth model

The growth model for Azospirillum brasilense pre-
sented in this paper, started from the assumption
that maintenance can be neglected. The available
experimental data, however, do not allow to de-
termine whether maintenance can be omitted or
not.

This shortcoming is illustrated by identification of
the parameters for the model (1,2,3) taking main-
tenance into account. Expression (5) cannot be
used, in this case, to estimate the yield coefficient
YX/S . Here, the four parameters (µmax, KM , YX/S

and m) have to be identified simultaneously. The
results are presented in Table 2 and in Figure 5.
The model with maintenance seems to provide a
better description of the last hours (10h till 17h)
of the fed batch experiment, while the validation
results (see Figure 6) are less good for that same
period. The model with maintenance predicts a
decrease in biomass concentration after depletion
of the substrate. This phenomenon is, however,
not observed in the data.

Another problem of the model is the overestima-
tion of the initial substrate concentration CS(0).
The estimated values for CS(0) are consistently
higher than the experimental values. The con-
sumption of malate in the first hours of the ex-
periments seems to exhibit a delay or lag which
cannot be described by the model.
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Fig. 5. Identification of parameters for a model in-
cluding maintenance: experimental data (∗,◦)
and model prediction (−) for biomass and
substrate concentrations.
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Fig. 6. Experimental data (∗,◦) and simulation
of the growth model including maintenance
(–) on batch (upper plot) and fed batch
experiments (lower plot).

Although the model does have some shortcomings
as mentioned above, it provides an accurate de-
scription of the transitions of one growth phase to
another. The current model is in its most simple
form, and shall be extended in a further stage to
overcome these problems.

4. CONCLUSIONS

This paper presents a successful validation of op-
timal experiment design for parameter identifica-
tion for the Monod kinetics. Due to some practical
limitations, a trade-off has to be made between
maximum information content and practical fea-
sibility. Theoretical optimal designs have success-
fully been translated to feasible (sub)optimal de-
signs by imposing constraints on substrate con-
centrations and simplifying the feeding phase.
With only a few additional experiments the ac-
curacy of the kinetic parameters was significantly
increased as illustrated by the individual confi-
dence intervals and joint confidence regions.
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