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Abstract: Information regarding when and how a fermentation process changes
from one phase to the next is very useful to its modelling and hence control
and optimization. In this study, we demonstrated that such information could
be obtained by applying DPCA to online measurements of the fermentation
process. The process under study is fermentation of Rifamycin B in a multi–
substrate complex medium. We compare our observation to the results obtained
from the simulation developed for the same system (Bapat et al., in press).
The analysis showed that for the first 100 hours or so, the progress of the
fermentation experiment in the DPCA score space matched very well to the
developed simulation, which had been validated with actual off–line data (Bapat
et al., in press). After that (ie. 100 hours onward), there is a significant difference
between DPCA analysis result and the simulation result. The reason seemed to be
that the simulation did not capture the effects of the secondary metabolism which
becomes dominant at later stage of the fermentation.
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1. INTRODUCTION

There are a number of reasons which necessitate
phase identification of fermentation. The first rea-
son lies in the improved understanding of the pro-
cess. The knowledge of when and how the process
change from one phase to the next could give in-
sights into which metabolic pathways the fermen-
tation is undertaking. This is especially relevant to
fermentation with multi–substrate complex media
where there are many metabolic pathways (corre-
sponding to multiple substrates) for the microor-
ganism to proceed. In addition, phase recognition
of fermentation process might also be useful in
its optimization and control. A model with high
accuracy and high robustness for a fermentation
process is always desired but more often than not
unavailable. The difficulty in modelling such a
process is blamed on the complex dynamics of
microorganisms, the variable/ill–defined fermen-
tation media (Lopes and Menezes, 2004), and
the multi–phase characteristic of the fermentation
itself (Hanai and Honda, 2004). Accurate state
identification could help to enable phase–wise pro-
cess modelling for improved performance.

Multivariate statistical techniques and particu-
larly Principal Component Analysis (PCA) have
been used in many areas such as monitoring and
supervision of continuous processes (MacGregor
et al., 1991) as well as batch processes (Nomikos
and MacGregor, 1995); improving process un-
derstanding (Kosanovich et al., 1996). In addi-
tion, PCA applications have been reported in
(Gregersen and Jorensen, 1999; Albert and Kin-
ley, 2001; Lopes and Menezes, 2004) for monitor-
ing and supervision of fermentation process. In
this paper, we will use dynamic PCA (DPCA)
approach to analyze online data from the fermen-
tation of Rifamycin B in a multi–substrate com-
plex medium. DPCA, a variant of PCA technique,
was proposed by (Ku et al., 1995) to account
for process dynamic behaviors more effectively.
Results from DPCA analysis are compared to the
corresponding ones from a simulation developed
for the same system and described in (Bapat et
al., in press).

2. PRINCIPAL COMPONENT ANALYSIS
(PCA)

Principal Component Analysis (PCA) is a lin-
ear dimensionality reduction technique, optimal
in terms of capturing the variability of the data.
It determines a set of orthogonal vectors, called
loading vectors, ordered by the amount of variance
explained in the loading vector directions. The
new variables, often referred to as principal com-
ponents are uncorrelated (with each other) and
are weighted, linear combinations of the original

ones. The total variance of the variables remains
unchanged from before to after the transforma-
tion. Rather, it is redistributed so that the most
variance is explained in the first principal compo-
nent (PC), the next largest amount goes to the
second PC and so on. In such a redistribution of
total variance, the least number of PCs is required
to account for the most variability of the data sets.
The development of PCA model, which can be
found in numerous published literature including
(Ralston et al., 2001; Russell et al., 2000) is sum-
marized as follows. For a given data matrix Xo

(raw data), which has n samples and m process
variables as in (1), each row xT

i is a sample of m
variables associated with a given time.

Xo =

⎛
⎜⎜⎜⎝

x11 x12 . . . x1m

x21 x22 . . . x2m

...
... . . .

...
xn1 xn2 . . . xnm

⎞
⎟⎟⎟⎠ (1)

where: xij is the data value for the jth variable at
the ith sample.

Initially, some scaling is required. The most com-
mon approach is to scale the data using its mean
and standard deviation

X = (Xo − 1nµT )D−1 (2)

where: Xo is a n × m data set of m process
variables and n samples.

µ is the m× 1 mean vector of the dataset.

1n = [1, 1, . . . , 1]T ∈ Rn.

D = diag(sd1, sd2, . . . , sdm) whose ith ele-
ment is standard deviation of the ith variable.

After appropriate scaling, the loading vectors can
be determined by singular value decomposition
(SVD) of the data matrix

1√
n − 1

X = UΣVT (3)

where: U ∈ Rn×n and V ∈ Rm×m are unitary
matrices.

Σ ∈ Rn×m is diagonal matrix.

Solving Equation 3 is equivalent to solving an
eigenvalue decomposition of the sample covariance
matrix S

S =
1

n − 1
XT X = VΣVT (4)

The matrix Σ contains the nonnegative real sin-
gular values of decreasing magnitude along its
main diagonal (σ1 ≥ σ2 ≥ . . . ≥ σmin(m,n)),
and zero off–diagonal elements. Column vectors
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in the matrix V are the loading vectors. Upon
retaining the first a singular values, the loading
matrix P ∈ Rm×a is obtained by selecting the
corresponding loading vectors.

The projections of the observations in X into the
lower dimensional space are contained in the score
matrix

T = XP (5)

and the projection X̂ of T back into the m–
dimensional observation space

X̂ = TPT (6)

The residual matrix E is the difference between
X and X̂

E = X − X̂ (7)

The residual matrix E contains that part of the
data not explained by the PCA model with a
principal components and usually associated with
“noise”, the uncontrolled process and/or instru-
ment variation arising from random influences.
The removal of this data from X can produce a
more accurate representation of the process, X̂
(Russell et al., 2000).

Dynamic Principal Component Analysis (DPCA)

Ordinary PCA presented above is essentially a
linear technique, and hence its best applications
are limited to steady state data with linear rela-
tionships between variables (Misra et al., 2002).
To analyze a dynamic system, Dynamic Principal
Component Analysis (DPCA) is required. The
concept of DPCA was based on applying PCA to
time lagged input data (Ku et al., 1995).

Mathematically, DPCA starts with forming a
time–lagged version of the input data X

Xo
d =

⎛
⎜⎜⎜⎜⎜⎜⎝

x(d + 1)T x(d)T . . . x(1)T

x(d + 2)T x(d + 1)T . . . x(2)T

...
...

...
...

...
...

x(n)T x(n − 1)T . . . x(n − d)T

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

where: x(k) = [xk,1xk,2 . . . xk,m]T is the m–
dimensional observation vector at time k. n is the
number of data samples. d is the time lag.

The corresponding covariance matrix S for the
time–lagged data is

S =
(Xd)T (Xd)
n − d − 1

(9)

Solving the eigen–decomposition of the covariance
matrix S (Equation 4) and retaining a principal
components gives the DPCA model for X.

3. RIFAMYCIN B FERMENTATION MODEL

The fermentation model that we used in this study
was developed by P. Wangikar and his colleagues
at Indian Institute of Technology (Chemical En-
gineering Department) and reported in (Bapat et
al., in press). It is a dynamic model for the fer-
mentation of Rifamycin B, an antibiotic which is
produced on industrial scale, in a multi–substrate
complex medium. The model considers the or-
ganism to be an optimal strategist (maximizing
growth and product formation) with a built–in
mechanism that regulates the sequential and si-
multaneous uptake of multiple substrate combi-
nations. The uptake of individual substrate is
assumed to be dependent on the level of a key
enzyme or a set of enzymes. In addition, the frac-
tion of flux through a given metabolic branch is
estimated by solving the constraint multivariate
optimization problem.

4. EXPERIMENT DATA

A detailed description of the Rifamycin B fermen-
tation experiment can be found in (Bapat et al., in
press). In the experiment, a combination of differ-
ent substrates were employed. In this study, we
analyze GLU AMS SFCSL FEDBATCH experi-
ment which had GLU cose, AMmonium Sulphate,
Soya F lour and Corn S teep Liquor. Initial con-
ditions for the experiment are outlined in Table
1.

Table 1. Initial conditions of Rifamycin
B fermentation experiment

Variables (g/L) GLU AMS SFCSL FEDBATCH

Biomass 0.65
Amino acid 4
Glucose 70.43
(NH4)2SO4 3.4
Insoluble 20

From the online data collected from the experi-
ments, we selected the measurements for a number
of variables which correspond to the experimental
conditions (cf. Table 2), to form a data matrix
input to DPCA analysis.

5. DPCA ANALYSIS

5.1 Methodology

Procedure to carry out DPCA analysis is summa-
rized below
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Table 2. Variables in DPCA analysis

No. Variables

1 Age (hour)
2 exhaust CO2 concentration (%)
3 exhaust O2 concentration (%)
4 pH
5 dissolved O2 concentration (%)
6 stirring rate (rpm)

(1) The data set is initially augmented (ie. trans-
form into the lagged form Xd) as shown in
Equation 8. Several time lags were studied
and based on the findings in (Bapat et al., in
press), the time lag is set at t = 8 hour.

(2) Auto–scaling is applied to Xd (Equation 2).
(3) The covariance matrix S of the augmented

data is evaluated (Equation 9)
(4) Eigen–decomposition of S is performed and

a = 2 principal component vectors are re-
tained.

5.2 Results and Discussion

Fig. 1 shows the fermentation progress in DPCA
score space. When there is a change in the
progress’s direction, the point is marked as a red
dot and corresponding time is shown. The simula-
tion developed by P. Wangikar and his colleagues
was run for the same initial condition as that for
the experiment. Its results are presented in Fig. 3.
For better visualization, the result for amino acid
predicted by the simulation is shown in a separate
plot (ie. Fig. 2).

Observing Figs. 1, 2 and 3, we can conclude
that the results from DPCA analysis agree very
well with the simulation results for the first 100
hours. As the simulation results shown in Fig. 3
indicates, among the three substrates, amino acid
has the largest consumption rate at the beginning
of the fermentation. When its consumption rate
slows down, corresponding rates of other sub-
strates start to increase. This is reflected in Fig.
1 as a turning point at t = 20 hr. The next
significant change in the fermentation progress
occurs at t = 27 hr when the amino acid actually
starts being reproduced. Around t = 60 hr, Fig.
3 shows that the fermentation media runs out of
ammonium sulfate and this results in the turning
point at t = 60 hr in the score plot Fig. 1. During
60 to 92 hr, both amino acid and glucose are
consumed but from 92 hr, the prior substrate
is reproduced while the latter continues being
consumed. Again, DPCA detects the change and
reflects in a turning in the fermentation progress
(cf. Fig. 1). At t = 135 hour it seems that DPCA
results could be implying the depletion of amino
acid in the media, which is also predicted by the
developed simulation.

However, from t = 97 hour, DPCA results start to
deviate from what is predicted by the simulation.
For example, DPCA score plot clearly indicates
that phase changes occur at t = 105 hr, t = 125 hr,
t = 146 hr but no such changes could be observed
from the simulation results shown in Fig 3.

The reason for this discrepancy needs further
investigation and especially verification directly
with actual experimental data (which will be
available in the near future), instead of simulation
results. Nevertheless, it should be noted that as
the nitrogen source starts to deplete (i.e., both
ammonia and amino acids) around t = 90 hr,
the fermentation goes into a mode of endoge-
nous metabolism, where some cell lysis occurs
and cells grow on the nitrogen available from
protein released by lysis. Glucose uptake continues
for growth and for maintenance. The secondary
metabolic product formation, which is more sig-
nificant in this phase, was not accounted for by the
developed model. This explains the observation
that the simulation model fit experimental data
very well until the depletion of nitrogen source
from the medium (Bapat et al., in press). Toward
the end of fermentation run, as the secondary
metabolism becomes dominant, the simulation re-
sults appear significantly deviate from the actual
data (Bapat et al., in press). Consequently, com-
parison between DPCA results and the simulation
results for close–to–end fermentation experiment
might not give any valid conclusion.

6. CONCLUSION

We applied DPCA to online measurements of
Rifamycin B fermentation data to study the fer-
mentation progress. We compared our observation
to the results obtained from the simulation devel-
oped for the same system (Bapat et al., in press).
The analysis showed that for the first 100 hours or
so, the progress of the fermentation experiment in
the DPCA score space matched very well to the
developed simulation, which had been validated
with actual off–line data (Bapat et al., in press).
After that (ie. 100 hours onward), there is a sig-
nificant difference between DPCA analysis result
and the simulation result. The reason seemed to
be that the simulation did not capture the effects
of the secondary metabolism which becomes dom-
inant at later stage of the fermentation.

The study demonstrated the capability of DPCA
in identifying phase changes, which could be use-
ful in fermentation process optimization and con-
trol. For further work, we are going to validate
the DPCA results with the actual off–line data,
which as believed will further support the capa-
bility of DPCA. In addition, data from fermenta-
tion of Rifamycin B in other complex media are
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Fig. 1. Score plot from DPCA analysis: all red dots correspond to the time where phase changes in
fermentation are likely to occur
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Fig. 2. Simulation results for amino acids in the same experiment with corresponding red dots as in
Figure 1

also available and will be analyzed in the same
way. These works would establish the ground for
further studies such as building inferential PLS

model and integrate it with the developed simu-
lation for better optimization and control.
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Fig. 3. Simulation results for the same system
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