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Abstract: This paper proposes a technique for tuning of a discrete adaptive controller that 

is designed based on Lyapunov stability concepts. The tuning is based on the 

minimization of a performance index that can be calculated from a generalized eigenvalue 

problem (GEVP). The resulting controller, tuned with the proposed methodology, 

provides better performance than an adaptive controller based on a Recursive Least 

Squares Estimator (RLS) during sudden changes in model parameters. Copyright © 2005 
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1. INTRODUCTION 

Adaptive controllers have been proposed for systems 

that cannot be accurately modelled using available 

off-line data. This lack of model accuracy often 

arises for time-varying systems and for systems for 

which the model structure is not known a priori. For 

example, the growth rate term in the mass balance 

equations of bioreactors is often not accurately 

known (Zhang and Guay, 2002). Therefore, an 

adaptive estimator maybe used to estimate this term 

and then a controller can be designed based on this 

estimated term. 

When the model structure of a process is unknown a 

priori, a commonly used empirical model suitable for 

adaptive control design, is given as follows (Sanner 

and Slotine, 1992): 
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where y is the state, u is the input or manipulated 

variable, g and h are pre-specified basis functions 

that can be linear or nonlinear with respect to y and u
and a’s and b’s are a priori unknown parameters to 

be estimated on-line from input-output data. When 

linear basis functions are chosen, the model in 

equation (1) results in the common ARMA model 

given as follows: 
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The fact that the models in (1) and (2) are linear with 

respect to estimated parameters a’s and b’s facilitates 

the design of estimators with proper convergence and 

performance properties as explained later in the 

manuscript. Different types of estimators have been 

used to estimate parameters using the models given 

by equations (1) and (2). The most common type is 

the recursive least square estimator (RLS) that 

minimizes the sum of square errors between the 

measured and estimated values of y. The recursive 

least squares estimator is defined by the following 

two recursive equations: 
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Where, 
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nn bbaa ,...,,,..., 11  is the actual vector of 

parameters assuming that equation (1) is an accurate 

model of the actual process. 

knkknkk bbaa ,,1,,1
ˆ,...,ˆ,,,...ˆˆ  is the vector of estimated 

parameters at time k 

mkkknkkk uuuyyy ,...,,,..., 11X  is referred as to 

the regression vector and is a function of past input-

output data. 

c is the forgetting factor and it is used to assign a 

larger weight to new data versus older data. 

P is the estimation covariance matrix and it is an 

indicator of the uncertainty in the parameter 

estimates. 

The estimates obtained with the RLS estimator can 

be used for control using for example a one-step-

ahead controller. When the parameter estimates are 

assumed to be equal to the actual parameters, i.e. the 

certainty equivalence principle is applied, the one 

step-ahead controller is:  

1,1

1121

ˆ

ˆ,...,,,...,,0

k

knkknkkk
k

b

yyuuysp
u  (5) 

On the other hand, if a more robust controller is 

desired that accounts for uncertainty in the 

parameters, a controller referred to as cautious
(Wittenmark, 1995) can be used that takes into 

account the uncertainty given by the elements of Pk :

),ˆ,,( 11 kPX kkcautiousk yspgu           (6) 

Under persistent excitation conditions and for c=0,

the parameter estimates converge to their actual 

values whereas the matrix P converges to zero. This 

is a desirable outcome for time invariant systems, i.e. 

systems for which =constant. However, this is 

highly undesirable for time varying systems since, 

according to equation (3), the parameter’s adaptation 

stops when P=0. This undesirable scenario can be 

partially addressed by selecting a nonzero forgetting 

factor c. However, when c is nonzero, may cause to 

very large or infinite values of P in the absence of 

excitation which may ultimately lead to poor control 

if the controller given by equation (5) is used or 

alternatively to controller turn-off if the cautious 

controller in equation (6) is used. To address this 

issue, resetting of P, based on specific algorithms 

(Huzmezan et al, 2003)) or resetting at ad hoc 

selected time intervals, has been proposed. In 

summary, the tuning of an RLS estimator is 

challenging for chemical systems where parameters 

are expected to change in a gradual or step-like 

fashion, due to for instance occasional changes in 

operating conditions.

An alternative estimator that avoids some of the 

difficulties related to the RLS estimator is the 

gradient estimator (Sanner and Slotine, 1992). This 

type of estimator has been proposed for some 

chemical engineering applications including adaptive 

control of bioreactors (Perrier and Dochain, 1993). 

For this estimator the parameter update equation is as 

follows: 

 (7) k
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Where, K is diagonal and is the adaptation gain 

matrix Sk is the tracking error and is calculated, as 

shown later in the manuscript, based on Lyapunov 

stability concepts and, KD is a tuning constant that 

determines the rate of convergence of S.

The adaptation gain matrix may be constant or time 

varying. In this study, K will be allowed to change 

with time and it will be referred to as Kk to indicate 

its value at time interval k.

The obvious advantage of the gradient estimator is 

that it does not depend on an adapting covariance 

matrix P that presents inherent difficulties as 

discussed above. On the other hand, the algorithm 

requires proper tuning of an adaptation gain matrix 

that has great impact on the estimator performance. 

Often, in the literature, researchers have selected the 

gain matrix K ad-hoc or based on numerical 

simulations provided that a suitable model is 

available. However, there are no available techniques 

to systematically select the elements of K.

Additionally, the tracking error equation also 

introduces an additional tuning parameter KD as 

shown above. Therefore, a methodology is needed to 

tune adaptive controllers that used the gradient 

estimator given by equation (7). 

The objective of the current study is to propose a 

tuning methodology for this type of adaptive 

controller with a gradient estimator. 

A logical choice to select the tuning parameters K

and KD is to solve, using the information up to 

interval k-1, the following optimization problem: 
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The expectation of the sum of squares instead of the 

actual sum is used to account for model uncertainty 

in the parameters during adaptation and unmeasured 

disturbances. This problem is closely related to the 

optimal dual adaptive control problem that search for 

the optimal trade-off between sufficient excitation for 

fast model parameter identification versus good 

tracking properties. In the classical dual adaptive 

control formulation the minimization is done with 

respect to the future inputs whereas in equation (9) 

the cost is minimized with respect to the tuning 

parameters. However, the two problems are closely 

related in the sense that the control actions are 

directly dependent on the tuning parameters.  

The problem given by (9) is difficult due to the 

mathematical expectation that has to be computed for 

all possible disturbances and in the presence of 

model uncertainty. Thus, only numerical solutions 
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have been reported for relatively simple problems 

and under certain assumptions (Wittenmark, 1995).  

In this paper an approximate solution to the problem 

given by equation (9), based on robust control ideas, 

is proposed. The idea is to represent the closed loop 

system by a nominal model and model uncertainty. 

Using this representation, it will be shown that the 

problem in (9) can be formulated as an optimization 

of a set of linear matrix inequalities (LMI’s). The 

paper is organized as follows. Section 2 describes the 

adaptive control algorithm and the stability and 

convergence proofs. Section 3 presents the 

formulation of the tuning problem as an optimization 

using a set of LMI’s. Results and comparisons 

between the proposed method and an adaptive 

controller based on RLS estimation are presented in 

Section 4. Section 5 provides a brief summary and 

conclusions. 

2. ADAPTIVE CONTROLLER ALGORITHM 

The controller algorithm presented in this section is a 

discrete version of an algorithm proposed by Sanner 

(1992 ) for continuous systems. 

2.1 Definitions 

Given a DARMA (Discrete Autoregressive Moving 

Average) model of a system that is nth order with 

respect to the state and mth order with respect to the 

input: 
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The vectors of the parameters ai and bj are defined as 

follows: 

 (11a) T
naa 10A

 (11b) T
mbb 10B

The parameter estimate vectors are defined as 

follows: 

 (12a) T
knkk aa ,1,0 ˆˆÂ

 (12b) 
T

kmkk bb ,1,0
ˆˆB̂

Let the values of past input and output data be given 

by the following vectors: 

 (13a) T
nkkk yy 1Y

 (13b) T
mkkk uu 1U

Then, using equations (11)-(13), the DARMA model 

given by equation (10), can be reformulated in terms 

of the input and output vectors as follows: 
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Also for the purpose of designing an implementable 

controller, let  
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A filtered feedback error, to be justified by the 

stability proof given in the following section, is given 

as follows: 
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For simplicity, an adaptive algorithm based on a one-

step-ahead controller will be used.  A term 

proportional to the filtered error, sk, is added to tune 

the closed loop response, as follows: 
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In the particular case that  is zero during 

adaptation, the parameters are reset to the values in 

the previous time interval. In the presence of 

persistent excitation, it can be shown that the system 

will eventually converge to the correct values. 

kb ,0
ˆ

The errors in the estimated parameters are defined in 

the form of deviation variables as follows:  

AAA kk

~ˆ  (18a) 

BBB kk

~ˆ  (18b) 

The gradient descent method is used to formulate the 

parameter update equations where the error used for 

updating is the sum of the current and past value of 

the filtered errors, 1kk ss :

 (19a) 111
ˆˆ

kkkkk ssYKAA A

 (19b) 111
ˆˆ

kkkkk ssUKBB B

BA KK , are matrices of adaptation gains, with 

diagonal structure. Thus, the tuning parameters of the 

controller are KD and K= [KA KB].B

2.2 Stability 

Assumptions: For simplicity, it is assumed for the 

following proof that the system is time invariant or 

its parameters change in a step-like fashion where the 

time between changes is long enough such as the 

parameters converge to a steady state value. Also, for 

the first proof, the tuning parameters KD and K are 

assumed to be constant with time. Later in this 

section, the proof is expanded to account for tuning 

parameters that change in time within a finite set of 

values. For brevity, only a brief description of the 

proof is presented. 
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2.3 Stability with constant tuning parameters:

A Lyapunov function made by the combination of 

the squares of the estimation errors and the filtered 

error is defined as follows: 

211 ~~~~
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T
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Substituting equation (17) into equation (14) results 

in the following: 
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When the Lyapunov energy converges to 

zero,  and then it can be 

easily shown from equation (21) that: 

.0 and ˆ,ˆ
kkk sBBAA

spk yy 1 . (25)

For Lyapunov stability it is required: 

 (22) 01 kk VV

Combining equations (18), (20) and (22) and after 

collecting like terms and completing squares: 
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After evaluating expressions (19a) and (19b) at 

interval k+1 and substituting the result into equation 

(22), the following results: 

 (23) 2
11 kkDkk ssKVV

If KD>0, Equation (23) guarantees that the Lyapunov 

function is decreasing with time.  

2.4 Stability with time varying tuning parameters 

For the optimization problem given by equation (9) it 

is advantageous to add additional degrees of freedom 

to the problem by allowing the decision variables, 

i.e. the tuning parameters KD and K (KA and KB) to 

change with time whereas the stability proof in the 

previous section assumed that this parameters are 

constant in time. In this section the stability proof 

will be extended to account for the situation that the 

tuning parameters change with time. To the 

knowledge of the authors it is not possible to prove 

stability and to solve the optimization in equation (9) 

for infinite possible values of the tuning parameters. 

Therefore, it will be assumed that these parameters 

can only acquire a finite number of values and then a 

suboptimal solution of (9) will be sought using a 

combination of these values. Accordingly, a set of 

tuning parameter values will be defined as follows: 

B

BnAnB2A2B1A1 KKKKKK DnDD KKK ..., 21

 (24) 

For each element of the set , the system is 

guaranteed to be stable and the parameters converge 

as per the proof given in the previous subsection.  

The key idea to ensure stability when different 

elements of  are considered along time, is to 

calculate simultaneously on-line the evolution the 

parameter estimates kk AB ˆ and ˆ and the error sk for all 

elements of . However, only one specific control 

action based on one of the elements is actually 

implemented at any given time. In figure 1 the curves 

labelled ‘1’ through ‘5’ refer to the Lyapunov 

function given by equation (20) corresponding to 

parameters 1,1,1, ,A K , DB KK  through 5,5,5, ,, DBA KKK

respectively when, for example, n=5 in definition 

(24). Then when a new element of is considered, 

i.e. for a specific iiDiK BA KK , the parameter 

estimates kk AB ˆ and ˆ and the filtered error sk are reset 

to the values corresponding to this element of the set.  

This switch occurring at each time interval may 

cause a local increase in Lyapunov energy.  As an 

example, refer to the jump in Lyapunov energy 

between letters ‘A’ and ‘B’ in Fig 1. Each curve in 

Figure 1 corresponds to the progression of the 

Lyapunov function for a different element of .

Clearly, the Lyapunov function ultimately converges 

to zero despite that temporary increases in this 

function may occur. 

Time A

B

Fig 1: Lyapunov function as a function of time ( each 

line correspond to  a different element of the set 

defined by equation (24)) 

3. AN APPROXIMATE SOLUTION FOR THE 

PROBLEM STATED IN EQUATION (9). 

As mentioned above, the optimization problem given 

by equation (9) is very difficult since it has to be 

solved for all possible disturbances and model 

uncertainty. Therefore, in this section, an 

approximated solution to this problem based on a 

robust control approach is proposed. In order to 

apply this approach, a nonlinear state space model is 

formulated, based on definitions (10)-(19) presented 

above, as follows: 
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Where the disturbance di,k is an output bounded 

disturbance and D  in the last equation in (25) is the 

desired closed loop time constant. For example, for a 

first order system, the first equation in (25) is: 

kkkk dubyay 1  (26) 

DD ,-kd         (27) 

The other state equations in (25) are derived from 

equations (10)-(19) and are omitted here for brevity. 

The deviations in the model parameters ki,

~
A  and 

ki,

~
B , defined by equation (19), are not known 

because the actual values of these parameters are not 

known a priori. On the other hand, bound on these 

parameters can be obtained on-line by calculating 

confidence intervals of these parameters based on 

regression of current and past input output data. 

Then, based on definition (18) the deviations in 

parameters with respect to their nominal values 

and are assumed to be bounded by the 

identified confidence intervals as follows: 

kÂ kB̂
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Equations (27) and (28) define an uncertainty set : 

],[,,],,[ DDkkkk BBAA  (29) 

Liu (1968) has shown that bounds on the stability 

and performance properties of a nonlinear system 

can be found from the properties of an equivalent 

linear time varying system that is given as follows: 
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Where the matrix  is given by the linear 

combinations of matrices obtained from the 

Jacobian of the nonlinear system given by equations 

(25) calculated at each one of the possible 

combinations of the uncertainty set vertices defined 

by equation (29) as follows: 

kE

ki,E

iki
k

ik
,

1 E  (33) 

Since the derivatives in (33) can be shown to be 

linear with respect to the uncertainty elements 

described in (29), then: 

 (34) 
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For example, for a first order system, there are 8 

possible combinations of the uncertainty bounds 

according to (34a) and (35) and correspondingly 8 

possible matrices Ei are calculated at each time 

interval k.

Defining the ratio between the feedback errors to the 

input setpoint changes :krefy ,

2

2

v

e
 (35) 

Then, a bound on  for all the models defined by 

equation (32) can be found from a General 

Eigenvalue Problem (GEVP) defined as follows:  

P
min

s.t.

(36) 02
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This GEVP can be solved by using the LMI toolbox 

of Matlab. Then, an approximated solution to the 

problem given by equation (9) can be obtained from: 

min  (37) 

Where,  is calculated from (36) and  is a finite 

combination of tuning parameters defined by (24) 

and  is the uncertainty set defined by equation (29). 

The minimization in equation (37) is done using the 

function fmin in Matlab.  

After initializing the values  and  and control 

action vector , the tuning procedure includes the 

following steps at each time interval k:

kÂ kB̂

old
k

U

1. Calculate the uncertainty bounds in the uncertainty 

set  using available data up to the current time.. 

2. Update the parameter values according to 

equations (25) for each one of the tuning parameters 

combinations in the set  defined by equation (24).  

3. Find the best tuning parameter combination in the 

set  by solving the optimization problem stated in 

equation (37). 

4. Implement into the process the control action that 

corresponds to the best set of tuning parameters 

found in step 3 (It should be noticed that 

simultaneous calculations for all the combinations in 

the set  are carried on at each interval k but only 
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one control action  corresponding to the best 

combination is actually implemented. 

5. Go to step 1. 

4. EXAMPLE 

To illustrate the tuning method, a first order system 

was investigated as described by equations (38). First 

order filtered white noise disturbance d and square 

wave input are considered and step changes in 

the parameters are assumed to occur at k=100 and 

150 respectively as described in (38). The tuning 

parameters in the set  defined by (32) are limited to 

all the combinations of the values [0.4, 1.6, 3]. For 

example:  
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Figure 2 shows the evolution of the tuning 

parameters as a function of time following the 

solution of the optimization given by (38) at each 

time interval in the neighbourhood of the parameter 

step change. This figure shows that the tuning 

parameters have to change frequently in time both 

due to the change in parameters and the oscillating 

setpoint. Table 1 shows the normalized sum of 

square errors along the simulation. For comparison, 

the sum of squared errors obtained from a simulation 

for an arbitrarily tuned adaptive controller with fixed 

in time tuning parameters (Ka=1,Kb=1 and Kd=1) is 

shown in Table 1. The sum of errors is significantly 

larger for the arbitrary tuning as compared to the 

LMI method illustrating the need for proper tuning. 

Finally an adaptive controller based on an RLS 

estimator is simulated. The resulting normalized 

error, significantly larger than the error obtained with 

the LMI based method, is tabulated in Table 1. As 

expected the RLS based controller does not perform 

as well as the LMI controller especially after the step 

change in the parameters. The reason is that before 

this step change occurs, at k=100, the covariance 

matrix P converges almost to zero and consequently 

the RLS estimator responds very slowly to the 

sudden change in the model parameters as compared 

to the proposed estimator tuned according to 

equation (38). This is clearly shown in Figure 3 

where the adaptation of parameter a is shown for 

both the proposed tuning method and for the RLS 

based method. 

CONCLUSIONS 

A method is proposed to tune an adaptive controller 

based on a gradient estimator. The method uses a 

robust control approach to minimize a cost function 

in the presence of model uncertainty and 

disturbances. The controller based on the proposed 

tuning method is shown to be superior to a controller 

based on an RLS estimator during step changes in 

parameters. 
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Fig. 2: tuning parameters as a function of time 

resulting from the proposed optimization (eq. (37)) 

Tuning Ka=1,Kb=1 

KD=1 

Proposed 

method 

RLS

spsp yyy / 0.0084 0.0074 0.0109 

Table 1: Comparison of the normalized sum of 

squared errors.
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Fig. 3: adaptation of parameter a for the proposed 

estimator (eq.(37)) and for RLS. 
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