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Abstract: This paper addresses the problem of parameter convergence in adaptive
extremum seeking control design. An alternate version of the popular persistence
of excitation condition is proposed for a class of nonlinear systems with parametric
uncertainties. The condition is translated to an asymptotic sufficient richness
condition on the reference set-point. Since the desired optimal set-point is
not known a priori in this type of problem, the proposed method includes a
technique for generating perturbation signal that satisfies this condition in closed
loop. This demonstrates its superiority in terms of parameter convergence. The
method guarantees parameter convergence with minimal but sufficient level of
perturbation. The effectiveness of the proposed method is illustrated with a
simulation example.
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1. INTRODUCTION

Extremum seeking control (ESC) is a class of
adaptive control that deals with regulation to
unknown set points. This type of control has
been proposed by a number of authors to handle
optimization problems in nonlinear control sys-
tems and a number of applications of this method
have been reported in the literature ((Krstic and
Wang, 2000; Wang et al., 1998; Guay and Zhang,
2003; Guay et al., 2004) for example). The con-
troller finds the operating set-points that optimize
a performance or cost function. The uncertainty
associated with the function makes it necessary to
use some sort of adaptation and perturbation to
search for the optimal operating condition.

One of the main challenges with model based
or adaptive extremum-seeking control and most
deterministic adaptive control approach is the
ability to recover the true unknown values of the
parameters. In most approaches, parameter con-
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vergence to their true values can only be ensured
if the closed-loop trajectories provide sufficient
excitation for the parameter estimation routine.
In standard linear adaptive control approaches,
this problem is tractable (Ioannou and Sun, 1996)
and can be solved satisfactorily. A dither signal
can be introduced momentarily in the control
system to achieve the necessary excitation. For
nonlinear systems, the problem of determining
appropriate excitation conditions remains open.
Although some limited persistence of excitation
(PE) conditions have been derived, they remain
difficult to apply. Such conditions appear natu-
rally in (Guay and Zhang, 2003) for the solutions
of an adaptive extremum-seeking control problem.
In fact, the fulfillment of such conditions dictates
the performance of the optimization routine.

This study is focused on model based extremum
seeking techniques. In particular, we consider the
class of adaptive ESC problems introduced in
(Guay and Zhang, 2003) where the structure of
the objective function is employed in the design.
In contrast to non-model based approaches (see
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(Krstic and Wang, 2000) for example), no direct
measurement of the objective function is available
but must be inferred through the measurements of
the state variables and the estimation of model pa-
rameters. Examples of this type of problem arise
when the economic function involves quantities
such as costs of raw materials, operating costs and
values of products aside from system’s states and
unknown parameters.

In the previous works in this area (for exam-
ple (Guay and Zhang, 2003; Adetola and Guay,
2005; DeHaan and Guay, 2005)), convergence to
the optimum is guaranteed only by assuming the
satisfaction of a PE condition. Apart from the
fact that it is difficult to choose a signal that
satisfies such assumptions, it is necessary to select
one that achieves a good compromise between the
conflicting objectives of identification and control.
This paper complements the previous works by
translating the PE condition, which depends on
the nonlinear closed loop signals, into a suffi-
cient richness condition on the desired set-point
signals. However, since the desired optimal set-
point is uncertain in this type of problem, the
design of a perturbation signal that satisfies this
condition cannot be carried out off-line. The pro-
posed method includes a technique for generating
such signal in closed loop. The design guarantees
parameter convergence with a minimum loss of
regulation performance.

2. PROBLEM DESCRIPTION

Consider the following optimization problem

min
xp

p(xp, θ) (1)

subject to the system’s dynamics

ẋp = fp(x) + φ(xp)θ + Gp(x)u (2)

ẋq = fq(x)

where x = [xT
p xT

q ]T ∈ Rn are the systems states,
u ∈ Rm is the control input. The vector xp ∈ Rm

represents the system states involved in the ob-
jective function, θ represents unknown parameter
vector assumed to be uniquely identifiable and to
lie in a known, convex set θ ∈ Ωθ ⊆ Rnθ . The map-
pings f(x) : Rn → Rn and Gp(x) : Rn → Rm×m

are smooth. The following assumptions are made
about (1) and (2).

Assumptions

A1. The function p is C2 in its arguments and
∂2p/∂x2

p ≥ c0I > 0,∀(xp, θ) ∈ (Rm × Ωθ).
A2. ∃Gp(x)−1 ∀x ∈ Rn.
A3. The state xq ∈ Rm−n belongs to a positively

invariant set for any bounded xp.
A4. The mapping φ(xp) : Rn → Rm×nθ is a suffi-

ciently smooth - Cβ−1 matrix valued function;

β ≥ max{2, ceil(nθ

m
)}, where ceil(.) rounds its

argument to the nearest integer towards infin-
ity. Moreover, φ(xp) is assumed bounded for
bounded xp.

Assumption A1 state that the cost surface is
strictly convex in xp and the simplifying assump-
tion A2 is only made in order to allow for a direct
design of the adaptive controller.

3. EXTREMUM SEEKING SET-POINT AND
CONTROLLER DESIGN

3.1 Set-point update law

Considering the fact that the cost function con-
tains unknown parameter θ, the desired set-point
measurement cannot be obtained off-line. How-
ever, if the function p(xp, θ) is not complex, the
optimal value can be determined as a function of
θ by solving for xp in ∂p/∂xp = 0. When the
analytical expression of xp is not available, the
desired set-point may be obtained online using
Lyapunov method.

Let xr
p ∈ Rm denote a reference set-point for xp

and θ̂ denote an estimate of the unknown para-
meter θ. An online update law is designed such
that xr

p(t) approaches the optimum value x∗

p(θ̂)
exponentially. Let us consider an optimization
Lyapunov function candidate

Vsp :=
1

2

∥∥∥∥∥∂p(xr
p, θ̂)

∂xr
p

∥∥∥∥∥
2

�
1

2
‖zr‖

2
(3)

Taking the time derivative of Vsp, we have

V̇sp =
∂p

∂xr
p

[
∂2p

∂xr
p∂xr

p

ẋr
p +

∂2p

∂xr
p ∂θ̂

˙̂
θ

]
. (4)

Choosing the update law as

ẋr
p = −

(
∂2p

(∂xr
p)

2

)
−1 [

kr

∂p

∂xr
p

T

+
∂2p

∂xr
p ∂θ̂

˙̂
θ

]
(5)

with kr > 0, (4) becomes

V̇sp ≤ −kr ‖zr‖
2

(6)

Proposition 1. The optimal set-point xr
p(t) gen-

erated by (5) is feasible and converges to x∗

p(θ̂)
exponentially.

Proof . Assuming (for now, it will be shown later)

that (θ̂,
˙̂
θ) is bounded. This assumption coupled

with assumption A1 ensure that (5) exist and it is
finite. It follows from (6) that the origin zr = 0 is
exponentially stable Applying the inverse function
theorem, it can be seen that the mapping zr is
a diffeomorphism. Hence it concluded that xr

p(t)

converges to θ̂-dependent optimal set-point x∗

p(θ̂)
exponentially fast. �
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3.1.1. Sufficiently rich optimal set-point Since
parameter convergence is a vital issue in ESC
design, we have to provide some richness condition
on the set-point xr

p to ensure that θ̂ → θ as t → ∞.
To achieve this, the set-point is appended with a
bounded perturbation signal d(t). The rich set-
point is given by

r(t) := xr
p(t) + d(t) (7)

where d(t) is a sufficiently smooth and uniformly
bounded signal. In particular, the signal is para-
meterized as

d(t) :=

�∑
k=1

ak(t) sin(ωkt) = a(t)ρ(t) (8)

where a(t) = [a1(t) a2(t) . . . a�(t)] is the signal
amplitude vector and
ρ(t) = [sinω1t sinω2t . . . sinω�t], (with ωi 
=
ωj for i 
= j), is the corresponding sinusoidal
function vector. A method for generating the
coefficients a(t) is provided in subsection 4.1. The
design ensures that a(t) → a∗, the optimal value
that satisfies a PE condition.

3.2 Adaptive tracking controller

Let us define the tracking and parameter estima-
tion error vectors

zc = xp − r and θ̃ = θ − θ̂. (9)

and consider the Lyapunov function candidate

Vc :=
1

2
‖zc‖

2
+

1

2
θ̃T Γ−1θ̃ (10)

with Γ = ΓT > 0. Taking the time derivative of
Vc along the trajectory of (2), we have

V̇c =zT
c

(
fp(x) + φ(xp)θ̂ + Gp(x)u − ṙ

)
−

˙̂
θT Γ−1θ̃ + zT

c φ(xp)θ̃

Considering the control law

u = −Gp(x)−1
(
fp(x) + φ(xp)θ̂ − ṙ + kczc

)
,

(11)

with kc > 0 and the parameter update law

˙̂
θ = Γφ(xp)

T zc, (12)

it follows from (2) and (11) that

żc =φ(xp)θ̃ − kczc, (13)

and the time derivative of the Lyapunov function
results in

V̇c ≤− kc ‖zc‖
2
. (14)

Proposition 2. Consider the closed loop system
(13), adaptive control (11) and parameter update
law (12), the design is such that

lim
t→∞

(
zc, z(k)

c , θ̃(k)
)

= 0 (15)

with 1 ≤ k ≤ β and (.)(k) denotes dk

dtk (.).

To prove this result, we need the following lemma.

Lemma 3. Barbalat’s lemma (Krstic et al., 1995):
A signal ζ(k) → 0 as t → ∞ if (a)

∫
∞

0
ζ(k)dt exist

and its finite and (b) the signal ζ(k) is uniformly
continuous.

Condition (a) is evident when ζ ∈ L2 or ζ(k−1) →

0 asymptotically and condition (b) can be inferred
from the boundedness of ζ(k) and ζ(k+1).

Proof of Proposition 2. It is known from (10)
that Vc is a positive definite function (bounded
from below by zero). Since Vc is non-increasing

(14), it is concluded that zc(t) and θ̂(t) are uni-
formly bounded. Moreover, there exist a bounded
ς such that −∞ < −ς ≤ Vc(∞) − Vc(0) < 0.
This implies that −ς ≤

∫
∞

0
V̇c(τ)dτ ⇒ ς ≥

kc

∫
∞

0
‖zc(τ)‖

2
dτ ⇒ ‖zc‖

2
L2

≤ ς/kc < ∞. Since
zc ∈ L2 and φ(xp) is bounded by assumption, it
follows from (13) that żc(t) ∈ L∞. Applying the
above lemma, we conclude that zc → 0 as t → ∞.

Also, we know that
∫
∞

0
żc(σ)dσ = −zc(0) exists

and is finite. From the fact that żc is a function
of bounded signals we deduce that z̈c is bounded,
which implies that żc, is uniformly continuous and
hence żc → 0 as t → ∞. Also, it follows from the

adaptive law (12) that limt→∞

˙̃
θ(t) = 0.

Subsequently, it will be shown that (15) holds for
1 < k ≤ β by induction. Suppose (zc

(k−1), θ̃(k−1)) →
0, then (zc

(k), θ̃(k)) satisfies condition (a). Also,
condition (b) is satisfied because (zc

(k), θ̃(k)) and
(zc

(k+1), θ̃(k+1)) are functions of bounded signals.
Hence, (zc

(k), θ̃(k)) → 0. Since, (zc
(1), θ̃(1)) → 0

is guaranteed, we conclude that (15) holds. �

4. PARAMETER CONVERGENCE

Consider the state error dynamic (13) and the pa-

rameter error dynamic
˙̃
θ = −Γφ(xp)

T zc obtained
from (12). By an argument similar to the one used
in traditional adaptive control theory, a sufficient
condition for parameter convergence is that the
regressor φ(xp) be persistently exciting. That is,
there exists positive constants µ0 and T such that∫ t+T

t

φ(τ)T φ(τ)dτ ≥ µ0I, ∀t ≥ 0

Though the matrix φ(τ)φ(τ)T is singular for all τ
when (nθ > m), the PE condition requires that φ
rotates sufficiently in space that the integral of the
matrix φ(τ)T φ(τ) is uniformly positive definite
over any interval of some length T . However, it is
difficult to check that φ satisfies the PE condition
since the solution of the closed loop trajectories
are not known a priori.
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In the following, an alternative sufficient condition
that addresses the above limitations and guar-
antees parameter convergence is presented. The
condition requires an augmented regressor matrix
to be sufficiently rich.
By differentiating (13) with respect to time, zk

c

can be written explicitly as

zk
c = − kcz

(k−1)
c +

k−1∑
j=0

(k − 1)!

j!(k − j − 1)!
φ(xp)

(j)θ̃(k−j−1),

1 ≤ k ≤ β (16)

Using proposition 2 and the fact that zc → 0 in
the limit as t → ∞, (which implies that xp →

r∗ = x∗

p(θ̄) + a∗ρ(t)), equation (16) results in

lim
t→∞

zk
c (t) = lim

t→∞

φ(r∗)(k−1)(t)θ̃(t) = 0,

1 ≤ k ≤ β (17)

Defining

Zc :=
[
z(1)

c z(2)
c . . . z(Π)

c

]T
and (18)

Φ :=
[
φT φT (1) . . . φT (Π−1)

]
nθ×(m∗Π)

(19)

where max{2, ceil(nθ

m
)} ≤ Π ≤ β. Equation (17)

can then be re-written in a compact form as

lim
t→∞

Zc = lim
t→∞

Φ(r∗)T (t)θ̃(t) = 0. (20)

The next step in the analysis is to decompose the
time varying signal Φ into a constant matrix and
a periodic part. This procedure is similar to the
one presented in (Lin and Kanellakopoulos, 1999).
Firstly, (19) is expressed as

Φ =
[

φ̄1 . . . φ̄m . . . . . . . . . φ̄
(Π−1)
1 . . . φ̄(Π−1)

m

]
�

[
ψ1 ψ2 . . . ψmΠ

]
, mΠ = m ∗ Π (21)

where φ̄
(.)
l is the lth column of matrix φT (.). The

trigonometric (or Fourier) series expansion for
each nonlinearity vector ψi is computed as follows:
Let ωi1, ωi2, · · · , ωiCi (0 ≤ ωi1 < ωi2 < · · · <
ωiCi) and νi1, νi2, · · · , νiSi (0 < νi1 < νi2 < · · · <
νiSi) denote the distinct frequencies appearing in
the cosine terms and the sine terms of the Fourier
series expansion respectively. If we let

ξi(t) =
[
cos ωi1t · · · cos ωiCi

t sin νi1t · · · sin νiSit
]T

�
[
ξi1(t) · · · ξiCi

(t) ξi(Ci+1)(t) · · · ξCi+Si(t)
]T

i = 1, . . . , mΠ (22)

Then, each nonlinearity vector ψi defined in (21)
can be expressed in the form

ψi =Υi ξi(t) =

Ci+Si∑
j=1

Υij ξij(t), (23)

i = 1, . . . , mΠ

where Υi are nθ × (Ci + Si) constant matri-
ces whose elements are the real Fourier coeffi-
cients of the corresponding signals, and Υij , j =
1, . . . , (Ci + Si) is the jth column of Υi. This

decomposition method allows one to judge the
richness of the vector based on a constant matrix
only. However, as pointed out in (Lin and Kanel-
lakopoulos, 1999), the Fourier series expansion
employed in the decomposition may contain an in-
finite number of terms, when the elements of (21)
are not polynomial nonlinearities. In this case,
the series expansion may be truncated. Combining
(20) with equations (21) and (23), we obtain

lim
t→∞

ξij(t) ΥT
ij θ̃(t) = 0

i = 1, . . . , mΠ, j = 1, . . . , Ci + Si

(24)

and since the scalar functions ξij are all of the
form cos ωt or sin νt, equation (24) is equivalent
to

lim
t→∞

ΥT
ij θ̃(t) = 0

i = 1, . . . , mΠ, j = 1, . . . , Ci + Si.
(25)

Moreover, defining Υ1 = Υ11 · · ·Υ1(C1+S1), Υ2 =

Υ21 · · ·Υ2(C2+S2) etc, and ΥT = [Υ1 · · · Υm]
T
,

equation (25) can be written in a more compact
form

lim
t→∞

ΥT θ̃(t) = 0 (26)

or lim
t→∞

θ̃T (t)W θ̃(t) = 0

Since Υ is a constant matrix containing the set-
point x∗

p and a∗ in its entries (in the limit as t →
∞), if the nθ rows of Υ are linearly independent
or if W = ΥΥT is positive definite, then θ̃ = 0 is
guaranteed. However, it is not possible to verify
this conditions a priori for a given dither signal
because the matrix depends on unknown reference
set-point (the θ-dependent solution of (1)). In the
next section, we show how to generate optimal size
of some pre-selected sinusoids online.

4.1 Dither signal design

It has been shown that the presence of nonlin-
earities in a regressor vector increase the degree
of PE of a given reference signal for nonlinear
systems with special structure (Lin and Kanel-
lakopoulos, 1998; Lin and Kanellakopoulos, 1999).
However, for a general nonlinear system, this may
not be the case, the nonlinearities may detract
or add to the excitation (Dasgupta and Shrivas-
tava, 1991). In this work, we propose that the
dither signal be chosen as a linear combination
of sinusoids with at least nθ distinct frequencies.
However, since such a choice with constant arbi-
trary amplitude may not be optimal for nonlinear
systems, a method for generating optimal coeffi-
cients of the different basis functions (sinusoids) is
provided. A quadratic objective function is mini-
mized subject to a constraint that optimizes the
size of the selected frequency contents in order to
ensure positive definiteness of matrix W = ΥΥT .
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The condition requires all the eigenvalues of W

to be positive. This is true if and only if the
determinant of W (the product of the eigenval-
ues) is positive since W is a symmetric positive
semidefinite matrix.

The optimum amplitude of the dither signal is
proposed as the solution of the following con-
strained optimization problem.

min
a∈R�

aT Qa

such that Wd = det(W) > 0
(27)

with Q  0. The optimization problem is tack-
led using an infeasible interior point technique
(Vanderbei and Shanno, 1999). Firstly, a slack
variable ε is added so that (27) becomes

min
a∈R�

aT Qa

such that Wd − ε = 0, ε > 0.
(28)

The constraints are then eliminated by augment-
ing the objective function with high costs for vio-
lating them as follows.

min
a,ε

Pa = aT Qa −
1

M1
log(σ − ε)

+ M2(Wd − ε)2, σ > 0 (29)

with M1, M2 > 0. By the logarithmic barrier
term, the slack variable is required to be greater
than a design variable σ at all times. However, the
equality constraint (Wd − ε = 0) can be violated
at any instant, its satisfaction is only achieved as
the optimum solution is approached. The solution
of (29) can be shown to converge to that of (27) in
the limit as the positive constants M1, M2 → ∞.

Since we assume that system (2) is fundamen-
tally identifiable at the defining parameter values,
feasibility of (27) (and hence (29)) is guaranteed
by including sufficiently large number of regressor
derivatives in (19). The unconstrained optimiza-
tion problem (29) can be solved with gradient
techniques. Let ā∗ = [a∗, ε∗] be the optimizer of
(29), an update law that ensures ā → ā∗ as t → ∞

is chosen as

˙̄a = Proj {−kāDzā, ā} , ā(0) = [a0, ε0] (30)

where Proj{.} is a standard projection algorithm
(Krstic et al., 1995) used to ensure that the
vector ā is bounded or remains in some given
set. The vector zā = ∂Pā/∂ā is the gradient
function, kā > 0 is a design parameter and D is
a positive definite matrix function. Matrix D can
be chosen as in steepest descent method where
D = I (identity matrix) or as in trust region where

D =
(
∂2Pā/∂ā2+(�+κ)I

)
−1

with �=Frobenius

matrix norm of ∂2Pā/∂ā2 and κ > 0 is a small
design constant parameter. The initial conditions
are to be selected such that ε0 > σ and some

elements of a0 equals zero to avoid excessive initial
perturbation of the system.

Theorem 4. Consider the optimization problem
(1) for system (2) satisfying assumptions A1 −

A4. The controller (11), the update laws (5), (12)
and (30) for sufficiently large Π ensure that the
system’s state xp(t) converge to a neighborhood
of x∗

p(θ) - the unique minimizer of (1).

Proof . It can be deduced from proposition
(2) that limt→∞

∥∥xp(t) − xr
p(t)

∥∥ ≤ limt→∞ ‖d(t)‖
and it is known from proposition (1) that

limt→∞

∥∥∥xr
p(t) − x∗

p(θ̂)
∥∥∥ = 0. Moreover, (30) en-

sures limt→∞ a(t) = a∗ for large enough Π. There-
fore, the only solution of (26) is limt→∞ θ̃(t) = 0,

which implies limt→∞

∥∥∥x∗

p(θ̂) − x∗

p(θ)
∥∥∥ = 0. Using

triangle inequality, we conclude that

lim
t→∞

∥∥xp(t) − x∗

p(θ)
∥∥ ≤ ‖a∗

‖ . �

5. SIMULATION EXAMPLE

Consider two parallel isothermal stirred-tank re-
actors (DeHaan and Guay, 2005) in which reagent
A forms product B and waste-product C

A
1

−→ B

2A
2

−→ C

The economic steady state cost function to be
optimized is given by

p(xp, θ) =

2∑
i=1

[(pi1 + PA − PB)ki1AiV
0
i

+ (pi2 + 2PA)ki2A
2
i V

0
i ],

where PA, PB denote component prices, pij is the
net operating cost of reaction j in reactor i. The
reaction kinetic constants kij are only nominally
known. Ai is the concentration of reagent A in
reactor i with dynamics

dAi

dt
= Ain F in

i

Vi

− Ai

F out
i

Vi

− ki1Ai − ki2A
2
i

The inlet flows are the control inputs, while the
outlet flows are governed by PI controllers which
regulate reactor volume to V 0

i . Therefore,

ẋp = −

⎡
⎢⎢⎣

xp1kV 1(xq1 − V 0
1 + xq3)

xq1

xp2kV 2(xq2 − V 0
2 + xq4)

xq2

⎤
⎥⎥⎦

︸ ︷︷ ︸
fp

−

[
xp1 2x2

p1 0 0
0 0 xp2 2x2

p2

]
︸ ︷︷ ︸

φ

θ +

⎡
⎢⎢⎣

Ain

xq1
0

0
Ain

xq2

⎤
⎥⎥⎦

︸ ︷︷ ︸
Gp

u,
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where xp = [A1, A2]
T , xq1, xq2 are the two tank

volumes, xq3, xq4 are the PI integrators, and θ =
[k11, k12, k21, k22]

T .

Following the design procedure, the optimizing
controller, parameter estimates and the set-point
signal xr

p are generated via equations (11), (12)
and (5) respectively. For the simulation, the
dither signal is selected as d1(t) = d2(t) =
a1(t) sin(0.3t) + a2(t) sin(0.18t) and Π = 3 so
that the augmented regressor matrix Φ(r∗)T =
[φT φ̇T φ̈T ]. The matrix Υ is obtained via the
decomposition method presented in section 4. For
simulation purpose, x∗

p is replaced with its esti-
mate xr

p at each time t and the optimal value
of the dither amplitude that ensures the positive
definiteness of W = ΥΥT is obtained via (30).
Fig. 1(a) shows that the cost function converges
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W
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k
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k
21

k
22

a
1

a
2

p

(a) (b)

(c)
(d)

(e) (f)

reactor 1 

reactor 2

Fig. 1. Simulated system trajectories: (a) cost
function, (b) reference set-point and state,
(c, d) unknown parameters and estimates for
reactor 1 and 2 respectively, (e) control in-
puts, (f) dither signal amplitude and deter-
minant of matrix W.

to the unknown optimal p∗(x∗

p, θ). Fig. 1(b) shows
that the set-point signal converges to the optimum
value x∗

p(θ) while the state xp oscillates about the
optimum. The parameter estimates converge to
the true values as shown in fig. 1(c-d) and the
control input, fig. 1(e), is implementable. The tra-
jectories of the dither amplitude and the determi-
nant are shown in fig. 1(f) for completeness. The
figure showed that a(t) converges to the required
optimum (vertical-axis labelling on the left) and
the determinant Wd remains positive (vertical-
axis labelling on the right).

6. CONCLUSION

A persistence of excitation condition is proposed
for the ESC of a class of nonlinear systems. An
optimization based method is then developed for
generating sufficiently rich optimum set-points
that satisfies this condition online. The proposed
design method guarantees parameter convergence
and at the same time ensure small steady-state
error in the cost function.

REFERENCES

Adetola, V.A. and M. Guay (2005). Adaptive
output feedback extremum seeking control of
linear systems. In: Proceedings of the 16th
IFAC world Congress. Prague.

Dasgupta, Soura and Yash Shrivastava (1991).
Persistent exciation in bilinear systems.
IEEE Transactions on Automatic Control
36(3), 305–313.

DeHaan, D. and M. Guay (2005). Extremum
seeking control of state constrained nonlinear
systems. Automatica 41(9), 1567–1574.

Guay, M and T. Zhang (2003). Adaptive ex-
tremum seeking control of nonlinear dynamic
systems with parametric uncertainties. Auto-
matica 39(7), 1283–1293.

Guay, M., D. Dochain and M. Perrier (2004).
Adaptive extremum seeking control of contin-
uous stirred tank bioreactors with unknown
growth kinetics. Automatica 40(5), 881–888.

Ioannou, P.A and Jing Sun (1996). Robust Adap-
tive Control. Pentice Hall, Upper Saddle
River, New Jersey.

Krstic, M and H.H. Wang (2000). Stability of ex-
tremum seeking feedback for general dynamic
systems. Automatica 36(4), 595–601.

Krstic, M., I. Kanellakopoulos and P. Kokotovic
(1995). Nonlinear and Adaptive Control De-
sign. John Wiley and Sons Inc. Toronto.

Lin, Jung-Shan and Ioannis Kanellakopoulos
(1998). Nonlinearities enhance parameter
convergence in output-feedback systems.
IEEE Transactions on Automatic Control
43, 204–222.

Lin, Jung-Shan and Ioannis Kanellakopoulos
(1999). Nonlinearities enhance parameter
convergence in strict feedback systems. IEEE
Transactions on Automatic Control 44, 89–
94.

Vanderbei, Robert J. and David F. Shanno (1999).
An interior point algorithm for nonconvex
nonlinear programming. Computational Op-
timization and Applications 13, 231–252.

Wang, H.H., S. Yeung and M. Krstic (1998).
Experimental application of extremum seek-
ing on an axial flow compressor. In: Pro-
ceedings of the American Control Conference.
Philadelphia. pp. 1989–1993.

IFAC - 572 - ADCHEM 2006


