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Abstract: This paper proposes a nonlinear finite time convergent observer that does
not require to compute any inverse coordinate transformation. The finite time estimate
is recovered from two asymptotically convergent estimates which have linear error
dynamics in transformed coordinates through the transformation Jacobian only. An
extended version of this nonlinear finite time observer is next envisaged. The finite
time estimate is obtained from two pseudo linear dynamic systems and require to
compute only the Jacobian of two functions which are the solutions of two systems of
partial derivative equations.
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1. INTRODUCTION

Monitoring of the component concentrations is a
key question for productivity and safety in the
chemical industry. However it often requires very
specific and expensive sensors that cannot be used
in practice. Therefore the real-time estimation of
component concentrations using a state observer
is a very attractive option.

Since the first observers for linear systems have
been developed by Kalman and Luenberger sev-
eral decades ago, several different techniques have
been proposed to deal with nonlinearities and
model uncertainties. However these techniques
give an estimate that reaches the real state asymp-
totically what may be a limitation for batch and
fed-batch processes.

An observer that converges in finite time has
been recently proposed (Engel and Kreisselmeier,
2002). The key idea is to use the present and
delayed estimates provided by two independent
classical observers to compute an estimate that
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converges exactly to the state after a predefinite
time delay. The estimate formulation arises from
solving a set of four equations linking the state
and each of the two classical estimates at both
present time and delayed time. The finite time
observer performance relies on the linearity of the
estimation error dynamics and its use is therefore
restricted to linear time-invariant systems.

The field of application of this technique has been
extended to linear time-varying systems (Menold
et al., 2003b). The use of the transition matrix of
the system is introduced to compare the delayed
and present estimates. The same authors have also
extended the technique to nonlinear systems that
can be transformed into the observer canonical
form (Menold et al., 2003a). Once the nonlin-
ear system is transformed into its normal form,
two observers with linear error dynamics can be
developed and the finite time estimation can be
carried out in these coordinates. The estimate in
the original coordinates is then retrieved by the
inverse transformation.

In this paper, we propose a finite time observer
for nonlinear systems that does not require to
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compute the inverse coordinates transformation
but only its Jacobian. The estimate is computed
in transformed coordinates associated to a pseudo
linear form of the system (Menold et al., 2003a)
and its expression comes from the set of equations
used to estimate linear time invariant systems
(Engel and Kreisselmeier, 2002). The estimate in
original coordinates is obtained by differentiating
the previous expression introducing the Jacobian
of the coordinates transformation. A more general
approach using two different changes of variables
obtained from two systems of partial derivative
equations is then presented. Also in this case,
the estimation requires to compute the inverse
Jacobian of each of the transformations only.

The paper is structured as follows. In Section 2
we present a finite time observer for nonlinear
systems that can be transformed into pseudo
linear system with nonlinearities depending on the
input and output only. This section ends by an
example of a numerical simulation. In Section 3
we propose a finite time observer which require to
compute the Jacobian of two functions which are
the solutions of two systems of partial derivative
equations. This section is ended by an example of
a numerical simulation.

2. FINITE TIME OBSERVER

Consider the following observable nonlinear sys-
tem :

ẋ = f(x, u), x(t0) = x0, t ≥ t0 (1)

y = h(x)

with state x ∈ R
n, input u ∈ R

m and output
y ∈ R. Assume that there exists a change of
coordinates

z = Ψ(x) (2)

allowing to transform the system (1) into the
following observable pseudo linear system (Hou
and Pugh, 1999),(Krener and Respondek, 1985) :

ż = Az + β(y, u), z(t0) = z0, t ≥ t0 (3)

y = Cz

where β is a known nonlinear function that only
depends on the input and output. The observabil-
ity involves that two gain matrices H1 and H2 can
be computed so that both following matrices have
desired eigenvalues with negative real parts :

F1 = A − H1C (4)

F2 = A − H2C (5)

implying that both following systems are ob-
servers for system (3):

˙̂z1 = Aẑ1 + β(y, u) + H1 (y − Cẑ1) (6)
˙̂z2 = Aẑ2 + β(y, u) + H2 (y − Cẑ2) (7)

Each of the reconstruction errors associated with
the above observers is governed by a linear dy-
namics as follows:

ε̇1 = F1ε1 (8)

ε̇2 = F2ε2 (9)

This involves that for any time t ≥ D, the
following relations exist between the errors at
different time instances:

ε1(t) = eF1Dε1(t − D) (10)

ε2(t) = eF2Dε2(t − D) (11)

This leads to the following set of four equations :

ẑ1(t) = z(t) + ε1(t) (12)

ẑ2(t) = z(t) + ε2(t) (13)

ẑ1(t − D) = z(t − D) + e−F1Dε1(t) (14)

ẑ2(t − D) = z(t − D) + e−F2Dε2(t) (15)

which, when it is solved for z(t), gives rise to the
following observer that converges within the pre-
definite time D (Engel and Kreisselmeier, 2002),
(Menold et al., 2003a):

ẑ(t) =
(
e−F1D − e−F2D

)−1 (
e−F1D ẑ1(t)

−ẑ1(t − D) − e−F2D ẑ2(t) + ẑ2(t − D)
)

The observer proposed in this paper comes from
the same set of equations. However, as the ulti-
mate goal is to estimate the state in the original
coordinates, the set of equations will be trans-
formed to depend on x explicitly. This is achieved
by differentiating each of the equations, using
Equation (2), it becomes:

˙̂z1(t) =
∂Ψ
∂x

ẋ(t) + ε̇1(t) (16)

˙̂z2(t) =
∂Ψ
∂x

ẋ(t) + ε̇2(t) (17)

˙̂z1(t − D) =
∂Ψ
∂x

ẋ(t − D) + e−F1D ε̇1(t) (18)

˙̂z2(t − D) =
∂Ψ
∂x

ẋ(t − D) + e−F2D ε̇2(t) (19)

The expression for the observer proposed in the
following theorem arises from solving the above
set of equations for ẋ(t).

Theorem 1. Assume that the change of coordi-
nates z = Ψ(x) that transforms the nonlinear
system (1) into the pseudo linear system (3) exists
and that its Jacobian is invertible. Furthermore
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assume that the systems (6) and (7) are observers
for (3) designed so that for any positive constant
D, the following term is invertible :

e−F1D − e−F2D (20)

Then the following dynamical system:

˙̂x =
(

∂Ψ
∂x

)−1

x=x̂

(
e−F1D − e−F2D

)−1

(
e−F1D ˙̂z1(t) − ˙̂z1(t − D)−

e−F2D ˙̂z2(t) + ˙̂z2(t − D)
)

(21)

with
Ψ(x̂(t0)) = ẑ1(t0) = ẑ2(t0)

is a finite time observer for the system (1) in the
sense that the estimation x̂ converges exactly to
the state x after the time delay D.

Proof

Let us choose an arbitrary positive constant D.
As the systems (6) and (7) are observers that
converge to z with linear error dynamics; further-
more, as they have the same intial conditions; the
following system is a finite time observer for (3):

ẑ =
(
e−F1D − e−F2D

)−1 (
e−F1D ẑ1(t)

−ẑ1(t − D) − e−F2D ẑ2(t) + ẑ2(t − D)
)
(22)

and for any time t ≥ t0 + D, we have :

ẑ(t) = z(t) = Ψ(x(t)) (23)

Therefore, integration of the following dynamical
system:

˙̂z =
(
e−F1D − e−F2D

)−1
(
e−F1D ˙̂z1(t)

− ˙̂z1(t − D) − e−F2D ˙̂z2(t) − ˙̂z2(t − D)
)
(24)

with the initial conditions:

ẑ(t0) = ẑ1(t0) = ẑ2(t0) (25)

leads to a finite time observer for z(t). Let us
define the estimate x̂ so that

ẑ = Ψ(x̂) (26)

Then, the following dynamical system

˙̂x(t) =
(

∂Ψ
∂x

)−1

x=x̂

˙̂z(t) (27)

with the following initial conditions:

Ψ(x̂(t0)) = ẑ(t0) (28)

is an observer for system (1) that converges ex-
actly to the state within the predefined time delay
D. �

This one-step approach is different from the two-
step one adopted in (Menold et al., 2003a). Their
technique consists in transforming the system into
a linear one by an appropriate transformation and
to make a finite time estimation in these coordi-
nates. Then the estimate in the original coordi-
nates is retrieved through the inverse transforma-
tion. The observer proposed in this paper provides
an estimate in one step only. This is achieved
using the transformation Jacobian and therefore
it does not require to compute the inverse trans-
formation. This approach is quite similar to that
adopted by Kazantzis and Kravaris for their non-
linear observer (Kazantzis and Kravaris, 1998).

Example

Consider the following system

ẋ1 =−x2
1 − x2 (29)

ẋ2 = 2x1x2 − x2
1 (30)

y = x1 (31)

The system can be transformed into a pseudo
linear one with the following coordinates change:

z1 = x1 (32)

z2 =−x2
1 − x2 (33)

It can then be written as system (3) where

A =
(

0 1
0 0

)
β =

(
0

2y3 + y2

)

Two arbitrary independent high gain observers
can be synthetised by taking

Hi =
(

αi
1/ωi

αi
2/ω2

i

)
i = 1, 2

with ωi positive and so that both following poly-
nomials are Hurwitz:

s2 + αi
1s + αi

2 i = 1, 2

The performance of the finite time observer are
illustrated by a numerical simulation on Figure 1.
The different parameters values used for the sim-
ulation are listed in Table 1. It can be seen that
the estimate reaches the state exactly after the
pre-defined delay D as expected.

The finite time convergence of the estimate pro-
vided by the above observer is guaranteed by the
linearity of the reconstruction errors dynamics.
However in practice, it is not always possible to
find a suitable change of variable allowing to build
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Table 1. Parameters for the numerical simulation

Variable Value Variable Value

x1(0) 0.5 x2(0) 1

x̂1(0) 0 x̂2(0) 0

Parameter Value Parameter Value

α1
1 3 α2

1 8

α1
2 2 α2

2 3
ω1 0.1 ω2 0.1

Fig. 1. Simulation results for exemple 1

observers with linear error dynamics. In particu-
lar, if the β function of Equation (3) depends on
the state, the error dynamics are not linear. In
this case, the use of high gain observers allows to
converge within a finite time into a neighborhood
of the state (Menold, 2004).

3. GENERALIZED FINITE TIME OBSERVER

In the following, we present a general approach of
the finite time observation for nonlinear systems.

Assume that the matrices A1, A2 are Hurwitz and
that the functions β1, β2 are such that [Ai, βi]
form controllable pairs. Furthermore, let Ψ1 and
Ψ2 be the solutions of the following systems of
partial derivative equations :

∂Ψ1

∂x
f(x) = A1Ψ1 + β1(y) (34)

∂Ψ2

∂x
f(x) = A2Ψ2 + β2(y) (35)

Then the following systems are observers for
Ψ1(x) ans Ψ2(x) respectively:

˙̂z1 = A1ẑ1 + β1(y) (36)
˙̂z2 = A2ẑ2 + β2(y) (37)

and we have the following linear dynamics :

d

dt
(ẑ1 − Ψ1(x)) = A1 (ẑ1 − Ψ1(x)) (38)

d

dt
(ẑ2 − Ψ2(x)) = A2 (ẑ2 − Ψ2(x)) (39)

Using the following notations :

z1 = Ψ1(x) (40)

z2 = Ψ2(x) (41)

and defining the reconstruction errors as:

ε1 = ẑ1 − z1 (42)

ε2 = ẑ2 − z2 (43)

The error dynamics linearity allows to write the
relations between the reconstruction errors at
different times instances as follows:

ε1(t) = eA1Dε1(t − D) (44)

ε2(t) = eA2Dε2(t − D) (45)

This allows to write the same set of four equations
as in Section 2, which becomes, after differentia-
tion :

˙̂z1(t) =∇Ψ1ẋ(t) + ε̇1(t) (46)
˙̂z2(t) =∇Ψ2ẋ(t) + ε̇2(t) (47)

˙̂z1(t − D) =∇DΨ1ẋ(t − D) + e−A1D ε̇1(t)(48)
˙̂z2(t − D) =∇DΨ2ẋ(t − D) + e−A2D ε̇2(t)(49)

where the following notations are used (i = 1, 2):

∇Ψi =
(

∂Ψi

∂x

)
x=x̂(t)

(50)

∇DΨi =
(

∂Ψi

∂x

)
x=x̂(t−D)

(51)

The formulation of the observer proposed in the
following theorem arises from solving this set of
equations for ẋ(t).

Theorem 2. Assume that the matrices A1, A2 are
Hurwitz and that the functions β1, β2 are chosen
so that the following systems are controllable:

˙̂z1 = A1ẑ1 + β1(y) (52)
˙̂z2 = A2ẑ2 + β2(y) (53)

and let Ψ1, Ψ2 be the solutions of the PDE
systems (34) and (35). Furthermore, assume that
the matrices Ai are chosen so that, for any positive
constant D, the following term is invertible:

e−A1D∇Ψ1 −∇DΨ1

(∇DΨ2

)−1
e−A2D∇Ψ2(54)

Then if the initial conditions are set as follows:

ẑ1(t0) = Ψ1(x̂(t0)) (55)

ẑ2(t0) = Ψ2(x̂(t0)) (56)

and satisfy the following condition:

ẑ1(t0) =∇0Ψ1

(∇0Ψ2

)−1
ẑ2(t0) (57)

the following dynamical system:
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˙̂x(t) = Ω−1
(
∆( ˙̂z1) −∇∆( ˙̂z2)

)
(58)

where

∆(z) = e−A1Dz(t) − z(t − D) (59)

and

∇=∇DΨ1

(∇DΨ2

)−1
(60)

Ω = e−A1D∇Ψ1 −∇e−A2D∇Ψ2 (61)

is a finite time observer for (1) in the sense
that the estimate reaches the states after the
predefinite time delay D.

Proof

Let us introduce the reconstruction errors defined
by Equations (42) (43). Equation (58) becomes:

˙̂x(t) = Ω−1 (∆(ż1) −∇∆(ż2)−
∆(ε̇1) + ∇∆(ε̇2)) (62)

By definition of z1 and z2 (Equations (40) and
(41)), it can be seen that :

∆(ż1) −∇∆(ż2) = Ωẋ (63)

Therefore, Equation (62) can be rewritten as
follows :

˙̂x(t) = ẋ(t) − Ω−1 (∆(ε̇1) −∇∆(ε̇2)) (64)

As for any time greater than t0 + D, Equa-
tions (44) (45) hold, both ∆(ε̇1), ∆(ε̇2) vanish and
we have

∀t ≥ t0 + D : ˙̂x(t) = ẋ(t) (65)

This implies that the estimate dynamics and the
state dynamics are the same after the convergence
time interval. It remains to show that the estimate
reaches the value of the state variables at time
t = t0 + D

Let us focus on the time interval [t0 t0 + D].
During this time interval, the delayed values for
the different variables remain constant and equal
to their initial values :

ẑ1(t − D) = ẑ1(t0) (66)

ẑ2(t − D) = ẑ2(t0) (67)

∇=∇0 (68)

The observer expression becomes:

˙̂x(t) = Ω−1
(
e−A1D ˙̂z1 −∇0e−A1D ˙̂z2

)
(69)

A simple expression for the integral of the above
expression is difficult to compute since in partic-
ular Ω is not constant. However, it can be written
as follows:

Ω ˙̂x(t) = e−A1D ˙̂z1 −∇0e−A1D ˙̂z2 (70)

and using the definition of Ω leads to the following
equation:

e−A1DΨ̇1(x̂(t)) −∇0e−A2DΨ̇2(x̂(t)) = (71)

e−A1D ˙̂z1 −∇0e−A2D ˙̂z2 (72)

As the initial conditions are set as follows :

Ψ1(x̂(t0)) = ẑ1(t0) (73)

Ψ2(x̂(t0)) = ẑ2(t0) (74)

the above equation can be integrated between t0
and t to give :

e−A1DΨ1(x̂(t)) −∇0e−A2DΨ2(x̂(t)) =

e−A1D ẑ1(t) −∇0e−A2D ẑ2(t) (75)

This equation can be rewritten as follows using
the reconstruction errors expressions:

e−A1DΨ1(x̂(t)) −∇0e−A2DΨ2(x̂(t)) =

e−A1DΨ1(x(t)) −∇0e−A2DΨ2(x(t))

−e−A1Dε1(t) + ∇0e−A2Dε2(t) (76)

The evaluation of the above expression at time
t = t0 + D leads to the following expression :

e−A1DΨ1(x̂(t0 + D)) −∇0e−A2DΨ2(x̂(t0 + D)) =

e−A1DΨ1(x(t0 + D)) −∇0e−A2DΨ2(x(t0 + D))

−ε1(t0) + ∇0ε2(t0) (77)

The assumption on the initial conditions (Equa-
tion (57)) is such that

x̂(t0 + D) = x(t0 + D) (78)

This shows that the estimate reaches the state at
time t = t0 + D. This completes the proof. �

The above procedure is more general than the pre-
vious one. It does not require to tune and compute
two observers with linear error dynamics. It only
requires to compute two functions by solving a set
of partial derivative equations. Solving this system
can be done by expanding the different functions
in Taylor series as proposed in (Kazantzis and
Kravaris, 1998). It is worth noting that both func-
tions Ψ1 and Ψ2 may be the same provided the
matrices A1, A2 are such that

(
e−A1D − e−A2D

)
is invertible. In this case the situation is exactly
the same as the one presented in Section 2.

Example

Consider the following Van der Pol oscillator :
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Table 2. Parameters for the numerical simulation

Variable Value Variable Value

x1(0) 1 x2(0) 1

x̂1(0) 0.5 x̂2(0) 0.2

Parameter Value Parameter Value

b1 -7 b3 14

b2 -10 b4 69

Fig. 2. Simulation results for exemple 2

ẋ1 = x2 (79)

ẋ2 =−x1 + x2 − x2
1x2 (80)

y = x1 (81)

and the following matrices and functions:

A1 =
(

b1 1
b2 − 1 1

)
β1 =

(
b1y + y3

3

b2y + y3

3

)

A2 =
( −1 − b3 1

−3 − b4 2

)
β2 =

(
b3y − y3

3

b4y − 2y3

3

)

where b1, b2, b3 and b4 are constants to be chosen
so that the matrices A1, A2 are Hurwitz. Solving
the PDE systems (34) and (35) leads to the
following expressions

Ψ1 =

(
x1

x2 + x3
1
3

)
, Ψ2 =

(
x1

x2 + x1 + x3
1
3

)

The implementation of the nonlinear finite time
observer (58) requires to define both following
systems (i = 1, 2)

żi = Aizi + βi(y) (82)

y = [1 0] zi (83)

and to compute the Jacobian of Ψ1 and Ψ2 which
are respectively given by:

∇Ψ1 =
(

1 0
x2

1 1

)
,∇Ψ2 =

(
1 0

1 + x2
1 1

)

Simulation results are shown on Figure 2 where
it can be seen that the estimate reaches exactly
the state after the predefinite time delay D as
expected.

4. CONCLUSION

In this paper we have presented a finite time ob-
server for nonlinear systems that proceeds in one
step and does not require to compute any inverse
coordinates transformation. The estimation only
requires to compute the Jacobian of the change
of coordinates that transforms the system into a
pseudo linear one allowing to build observers with
linear error dynamics.

As the change of coordinates that transforms the
system into a linear one is not always trivial,
a more general approach has been envisaged. It
consists in defining two pseudo linear systems
allowing to compute two functions by solving a
set of partial derivative equations. The estimate
is then computed from the integration of a dy-
namical system using the Jacobian of each of the
computed functions.
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