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Abstract: In this paper we give a critical overview of recent development in MIMO
control performance monitoring. We discuss a number of MIMO control benchmarks
including minimum variance, LQG, and user selected benchmarks. Performance
measures are extended from variance based measures in SISO control to covariance
based measures in MIMO control. Pros and cons of various benchmarks are discussed.
The diagnosis of poor control performance relative to a benchmark is a major focus of
the paper. We argue that in the MIMO setting worst performance directions should be
analyzed from data to yield meaningful diagnosis information. Therefore, multivariate
statistics should be applied for the diagnosis of worst performance directions, much
like its use in multivariate process monitoring.
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1. INTRODUCTION

Control performance monitoring and evaluation
can be traced to Åström (Åström, 1970; Åström,
1976) and later Harris (Harris, 1989) who demon-
strated that the minimum variance benchmark
can be estimated from normal closed-loop oper-
ation data. Åström in his CPC-2 paper (Åström,
1976) noted the following:

In the special case of minimum vari-
ance control ... it is known that the
covariance function will vanish for lags
greater than the sum of the sampling
interval and transport delay of the sys-
tem. It is then sufficient to record out-
put only and to compute its covariance
function.

1 Corresponding Author: qin@che.utexas.edu.
Supported by the Texas-Wisconsin Modeling and Control
Consortium.

The interest from both academia and industry
in control performance monitoring has surged
tremendously in the last decade as documented
in several review papers and a monograph (Qin,
1998; Harris et al., 1999; Kozub, 1996; Harris
and Seppala, 2002; Hoo et al., 2003; Huang and
Shah, 1999). The recent survey paper by Jelali
(Jelali, 2006) provides a very good collection of
recent development in the control performance
monitoring area from SISO, MIMO to valve stic-
tion problems. In the application domain, just in
HVAC systems alone, Johnson Control has im-
plemented over half a million control monitors in
the last ten years based on a pattern recognition
technique (Seem, 1998; Seem, 2006). Paulonis and
Cox (Paulonis and Cox, 2003) reported the devel-
opment of a control performance monitoring sys-
tem spanning over 14,000 PID loops at the East-
man Chemical Company. Industrial case studies
(Thornhill et al., 1999; Miller et al., 1998; Har-
ris et al., 1996b; Perrier and Roche, 1992; Wein-
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stein, 1992; Desborough and Miller, 2002) have
been published on the subject and minimum vari-
ance based performance indices are a part of many
commercially available control performance mon-
itoring packages.

More recently, academic research interest has
shifted to the assessment of MIMO control sys-
tems using the minimum variance benchmark
(Harris et al., 1996a; Huang et al., 1997; Huang,
1997). Harris et al. (Harris et al., 1996a) re-
formulated an LQ control solution (Harris and
MacGregor, 1987) and show that the optimally
controlled process follows a finite (d − 1)th-order
moving average process where d is the maximum
delay present in the interactor. They proposed a
statistical test of minimum variance based on a
cross-correlation of the interactor filtered output
vector and past outputs. The minimum variance
calculation involves time series modeling of the
closed loop system, spectral factorization of the
inverse interactor and subsequent solution of a
matrix Diophantine equation.

Huang et al. (Huang et al., 1997) introduced the
unitary interactor as a means of avoiding spec-
tral factorization. The unitary interactor matrix
was used to develop an explicit solution to the
singular LQ regulation problem by Peng and Kin-
naert (Peng and Kinnaert, 1992) and can be used
to derive MVC with arbitrary output weighting
(Huang, 1997). The need for a process transfer
function restricts the practical usefulness of these
algorithms. Harris recently (Harris, 2004) estab-
lished the statistical confidence for the quadratic
type of indices like the MVC benchmark.

The MVC benchmark has drawbacks in practice
and alternative benchmarks are proposed. One of
the limitations is the requirement of the interactor
matrix which is essentially a good part of the
entire process model. Seppala et al. (Seppala et
al., 2002) propose the use of time series analysis
to model the control error dynamics and from it
to analyze interactions in the multivariable sys-
tem. No prior information about the process delay
structure is required. McNabb and Qin (McNabb
and Qin, 2003; McNabb and Qin, 2005) demon-
strate that the variance based monitoring index is
insufficient for assessing the multivariate covari-
ance of the control performance. As an alternative
a covariance based monitoring index is proposed
to measure the variance-covariance inflation in
terms of the ’volume’ of the variability. Another
drawback of the existing literature is that little
has been done regarding diagnosis. In contrast, a
great deal of research has taken place in the area of
multivariate process monitoring (MacGregor and
Kourti, 1995; Qin, 2003). We argue that in the
MIMO setting the worst performance directions
should be analyzed from data to yield meaning-

ful diagnosis information. Therefore, multivariate
statistics should be applied for the diagnosis of the
worst performance directions, much like its use
in multivariate process monitoring. Further, the
need for the integration of control performance
monitoring and process monitoring is pointed out
as both problems co-exist in a plant with the
same data as the ultimate information source for
diagnosis.

In this paper we seek to provide a critical (rather
than complete) overview of the MIMO control
performance area and point to a new direction
of covariance-based monitoring. For a more com-
plete literature review the reader is referred to
(Jelali, 2006). This paper is organized as follows.
A critical overview of the MIMO control perfor-
mance monitoring literature is given with some
effort to unify some well-known methods. MIMO
control performance indices based on the covari-
ance is highlighted. Poor performance diagnosis
is conducted by analyzing the worst performance
directions using generalized eigenvalue analysis of
two covariance matrices. We further propose to
have the benchmark covariance as user-defined,
rather than from a theoretical calculation. The
user-defined benchmark can be a period of op-
eration data that are taken from an exemplary
operation. Since the benchmark is not necessarily
a lower bound, the diagnosis results from the
generalized eigenvector analysis include directions
in which the performance deteriorates and those
in which the performance improves. The worst
performance directions are then analyzed with a
proposed contribution analysis that leads to con-
trolled variables or loops most responsible for the
performance deterioration. The paper ends with a
few concluding remarks.

2. OVERVIEW OF MIMO CONTROL
PERFORMANCE MONITORING

2.1 Minimum Variance Benchmark

A MIMO process can be represented by the fol-
lowing equation:

y(k) = G(q)u(k) + H(q)e(k)

where G(q) is the process transfer function matrix
which contains possible time delays, e(k) is the
white noise innovation and H(q) is the transfer
function matrix of the disturbance. For SISO
processes G(q) can be represented by

G(q) = G̃(q)q−d (1)

where d is the time delay and G̃(q) is time delay
free. If we assume G(q) has no zeros outside the
unit circle, G̃(q) is invertible. For simplicity we
assume G(q) has no zeros outside the unit circle
except for the time delays.
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For MIMO processes the time delays appear in a
more complex form. The conventional approach is
to find a unitary interactor matrix D(q) such that
(Peng and Kinnaert, 1992; Huang and Shah, 1997)

G̃(q) = D(q)G(q) (2)

is full rank when q−1 → 0, where DT (q−1)D(q) =
I, that is, D(q) is a unitary matrix. Several
methods are available to calculate the interactor
matrix from the process model.

By examining the analogy between (1) and (2) we
can express G(q) as a product of two parts:

G(q) = D−1(q)G̃(q) = DT (q−1)G̃(q) (3)

where DT (q−1) is analogous to the time delay
in (1). Since H(q) is a rational transfer function
matrix of the disturbance without time delay,
D(q)H(q) should contain some positive factors of
q. Denoting

D(q)H(q) =
d∑

i=1

Fiq
i + R(q) (4)

where R(q) contains no positive factors of q. We
can now express the process output as

y(k) = DT (q−1)D(q)[G(q)u(k) + H(q)e(k)]

= DT (q−1)[G̃(q)u(k) +
d∑

i=1

Fie(k + i) + R(q)e(k)]

(5)

The innovation sequence e(k) is known up to the
current time k once y(k) is measured, but e(k + i)
for i = 1, . . . , d are not known. Therefore, the
feedback control u(k) cannot do anything about
the e(k + i) terms. u(k) can only be related to
e(k − i) (i ≥ 0) terms.

By defining the filtered output and using the
results in (5),

ỹ(k + d) = D(q)y(k)

=
d∑

i=1

Fie(k + i) + R(q)e(k) + G̃(q)u(k)︸ ︷︷ ︸∑∞
j=0

F−je(k−j)

(6)

For all possible feedback control the second and
third terms of (6) can be expressed as past inno-
vations. Further denoting

ỹmv(k + d) =
d∑

i=1

Fie(k + i)

and using the fact that ỹ(k) is stationary and e(k)
is white noise,

cov {ỹ(k)} = cov {ỹmv(k + d)}+cov{e(k−j) terms}
≥ cov {ỹmv(k)} (7)

and the MIMO minimum variance control is
achieved by

u(k) = −G̃+(q)R(q)e(k) (8)

where G̃(q) is full rank as q−1 → 0. Note that
pseudo-inverse is used here since G̃(q) can be non-
square.

The above derivation gives the MIMO MVC con-
trol law which actually achieves minimum covari-
ance in the filtered output. This result, however,
has not been widely recognized so far. We make a
few remarks about this derivation.

Remark 1. The above MIMO MVC derivation is
straightforward and analogous to the SISO MVC
derivations (Åström, 1970). The MIMO MVC
control law is explicitly expressed in terms of
the innovations which correspond to the process
output data.

Remark 2. The MIMO MVC law actually achieves
minimum covariance in the filtered output, as
depicted in (7), which make the difference of the
two covariances positive semi-definite. As a conse-
quence, MIMO MVC achieves minimum variance
in all possible directions in the filtered output
space.

Remark 3. All MVC based performance moni-
toring methods require the knowledge of D(q) im-
plicitly or explicitly, which is calculated by various
means. Huang and Shah (Huang and Shah, 1997)
start from the transfer function form, while Mc-
Nabb and Qin (McNabb and Qin, 2003) start
with the state space form. Both methods require
only the first d Markov parameter matrices of
the process, instead of the entire process model.
However, these Markov parameters are difficult to
obtain unless some form of identification tests are
performed.

Remark 4. Often the sum of the output vari-
ances is chosen as a benchmark, which is

tr[cov(ymv(k))] = EyT
mv(k)ymv(k)

= E
(
ỹT (k + d)D(q)DT (q−1)ỹ(k + d)

)
= E

(
ỹT (k + d)ỹ(k + d)

)
= tr[cov(ỹmv(k))]

= tr

{
d∑

i=1

FiReF
T
i

}
(9)

where Re = cov(e(k)). We will argue later that
the sum of variances is an incomplete measure of
the overall output covariance.

The minimum variance parameters Fi can be esti-
mated from routine operational data. The FCOR
algorithm (Huang et al., 1997) pre-estimates the
innovations e(k) and then performs correlation
analysis to estimate Fi. The subspace projection
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method of McNabb and Qin (2003) represents the
past innovations e(k − j) in terms of past data
y(k − j) (for j ≥ 0) and uses the projection
error as

∑d
i=1 Fie(k + i). These two algorithms

are essentially equivalent.

Harris (Harris, 2004) discusses the issue of the
variance of the minimum variance estimated from
data, which is an important issue that has not
been discussed before. Although many algorithms
that calculate the minimum variance are numeri-
cally equivalent, the algorithms that estimate the
coefficients Fi from closed loop data can differ in
terms of statistical efficiency or in the variance of
the estimates. The FCOR algorithm, for example,
first estimates the innovations sequence and then
estimates the coefficients Fi. This procedure re-
sembles the two stage least squares algorithm in
(Kashyap and Nashburg, 1974), which is shown
to be simple but not efficient in (Mayne and
Firoozan, 1982), where an improved efficient al-
gorithm is also proposed.

2.2 Alternative Performance Benchmarks

The limitations of the MVC based benchmark are

(1) The benchmark is based solely on time delay
restrictions; other restrictions such as hard
constraints are not considered.

(2) The minimum variance, although achievable
under ideal situations, leads to a non-robust
controller. This is characterized by excessive
input moves that are usually inherent to
MVC.

(3) Only disturbance rejection performance is
considered.

(4) The requirement of the interactor is restric-
tive in practice.

To overcome these limitations, many alternative
benchmarks have been studied. Huang and Shah
(1998) allow the user to specify the noise decay
rate after the interactor order, which has built-
in robustness in the benchmark. This approach,
however, still requires the interactor matrix. In
a similar effect but for the SISO case, Horch
and Isaksson (1999) introduced a finite closed-
loop pole in the benchmark controller to enhance
robustness.

A departure from the use of the interactor matrix
is given in the work of Huang et al. (Huang et
al., 2005) where, instead of using the exact inter-
actor matrix, only the order of the interactor is
used. This method removes the need to estimate
the interactor matrix. The time series analysis
approach of Seppala et al. (Seppala et al., 2002)
does not require any information about the inter-
actor matrix. The control error is analyzed as a
time series to detect whether the control loops are

interacting or not. Recent work of Harris and Yu
(Harris and Yu, 2003) performs degree of freedom
analysis to monitor the status of constraints and
long run behavior of the control performance.

To address the issue of excessive input moves of
MVC, Kadali and Huang (Kadali and Huang,
2002) propose to use LQG as a benchmark. A
drawback of this benchmark is the requirement
of the entire process model.

As the ultimate multivariable controller in indus-
try is model predictive control (MPC), several
attempts have been made to assess the perfor-
mance of MPC. Loquasto and Seborg (Loquasto
and Seborg, 2003) propose the use of similarity
factors and pattern recognition to determine the
MPC performance is normal or abnormal, and if
there is a significant disturbance change. Schaffer
and Cinar (Schaffer and Cinar, 2004) propose a
knowledge based approach for MPC performance
monitoring. Given the complexity of MPC that
involves model errors, disturbance changes, op-
timal target settings, active constraint sets, and
controller tuning, the MPC performance monitor-
ing is largely an unsolved problem.

3. COVARIANCE-BASED PERFORMANCE
INDEX AND DIAGNOSIS

In MIMO control performance monitoring, the
process output variance is an important param-
eter and the associated performance index may
be defined as the ratio of minimum variance to
actual variance

η =
tr {cov(ỹmv(k))}
tr {cov(ỹ(k))} (10)

The value of variance index η is between 0 and 1,
where the upper bound 1 corresponds to the min-
imum variance. In the above equation, however,
only the diagonal elements of covariance matrix
are taken into comparison and the information
from the off-diagonal elements is completely ig-
nored (McNabb and Qin, 2003).

To account for the variability that is accurately
represented by the covariance matrix, a volume-
like performance index is more appropriate, which
is defined by the ratio of the determinants as
follows,

Iv =
det {cov(ỹmv(k))}
det {cov(ỹ(k))} (11)

Since the determinant is the product of all eigen-
values of the covariance matrix, this index defines
exactly the volume ratio.

Denoting the eigenvalues of cov(ỹmv(k)) and
cov(ỹ(k)) as λmv

i and λi, respectively, the variance
based and covariance based performance indices
can be rewritten as

IFAC - 596 - ADCHEM 2006



η =
∑

λmv
i∑
λi

(12)

Iv =
∏

λmv
i∏
λi

(13)

Although both indices use information from the
eigenvalues, the volume-like index takes into ac-
count the covariance information and interactions
among variables.

To find a direction in ỹ(k) along which the worst
suboptimality occurs, we find the direction p with
‖p‖ = 1 and project ỹ(k) and ỹmv(k) to this
direction:

Πpỹ(k) = pT ỹ(k)/pT p = pT ỹ(k)
Πpỹmv(k) = pT ỹmv(k)/pT p = pT ỹmv(k)

The variance of the projections are, respectively,

var(Πpỹ(k) = pT cov(ỹ(k))p
var(Πpỹmv(k) = pT cov(ỹmv(k))p

The direction p along which the largest variance
ratio occurs is

p = arg max
pT cov(ỹ(k))p

pT cov(ỹmv(k))p
(14)

The direction of p after maximization give the
direction with the most potential to improve the
performance. The solution to this problem is a
generalized eigenvector problem,

cov(ỹ(k))pi = µicov(ỹmv(k))pi

where pi is the generalized eigenvector corre-
sponding to the ith largest generalized eigenvalue
µi. The volume of the suboptimality or variance
inflation due to poor control performance is:

l∏
i=1

µi

where l is the number of selected directions. The
volume-based performance can be defined as

Iv(l) =
l∏

i=1

µi
−1

It is straight forward to show from (7) that for all
possible projections Π,

cov (Πỹmv(k)) ≤ cov (Πỹ(k))

Therefore, µi ≥ 1 and Iv is between zero and
one. When ỹ(k) achieves the minimum variance
performance, Iv approaches one. On the other
hand, Iv close to zero indicates poor performance.

4. USER-DEFINED BENCHMARK

The calculation of minimum variance output ymv ,
however, requires a priori knowledge of the plant

and even the model of the system, which is not
attractive to implement in practice. Therefore, a
user-defined reference is chosen as the benchmark,
and the generalized eigenvalue analysis is imple-
mented. The user-defined reference can be a pe-
riod of ”golden” operation data from the process
during which desirable control performance was
achieved. It could be a period of operation data
right after a new controller has been commissioned
successfully. It could also used for rolling period
monitoring, for instance, benchmarking the per-
formance of the current week against that of last
week. Denoting the benchmark data as period I
and the monitored data as period II, the direction
along which the variance inflation occurs the most
is given by

p = arg max
pT cov(yII)p
pT cov(yI)p

(15)

The solution is the generalized eigenvector solu-
tion,

cov(yII)p = µcov(yI)p (16)

where µ is the generalized eigenvalue and p is
the corresponding eigenvector. The direction p
is referred to as the worst performance direction
(WPD). In addition to the first generalized eigen-
vector, other subsequent eigenvectors with large
enough eigenvalues (especially those much larger
than 1) are also of remarkable suboptimality in
control performance and should be examined to
further improve the control performance.

Since the reference benchmark is not necessarily a
minimum variance benchmark, there can be direc-
tions along which the monitored period II outper-
forms the benchmark period I. These directions
correspond to the generalized eigenvalues that are
significantly less than one, and the correspond-
ing eigenvectors represent the directions with the
smallest variance ratio of the monitored period
over the benchmark period. These eigendirections
constitute the subspace of improved performance
over the benchmark. Trying to maintain the loop
operations within this subspace will obviously
benefit the process control performance.

It is also meaningful to assess the overall variabil-
ity of the monitored period against the benchmark
period by defining a volume-like performance in-
dex as follows,

Iv =
det {cov(yII(k))}
det {cov(yI(k))} (17)

This ratio, while greater than zero, can be greater
than or less than one. If it is greater than one, the
performance of the monitored is in general worse
than the benchmark period and the worst perfor-
mance directions of the monitored period should
be examined. If, on the other hand, this index
is significantly less than one, the directions cor-
responding to the smallest eigenvalues should be
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examined to understand where the performance
has improved. Denoting µi, for i = 1, 2, . . . , ny as
the generalized eigenvalues in descending order,
the volume based index in (17) can be rewritten
as

Iv =
ny∏
i=1

µ−1
i (18)

which is easy to calculate once the generalized
eigenvalues are calculated.

5. CASE STUDY

Industrial operating data collected from the DCS
system of a wood waste burning power boiler are
used here as the example to examine and verify
the applicability of the user-defined performance
assessment approach. The data set is composed of
sample points with the sampling time of five sec-
onds and three subsets of process variables (PV),
the corresponding set-point (SP) and controller
outputs (OP), respectively. The data processing is
applied to the controller error terms, i.e., PV-SP.
All these data points are preprocessed by scaling
to zero mean and unit variance in every loop.
The detailed physical description for these loops
is given in Table 1.

The covariance based monitoring is performed on
a data set with 150,000 consecutive data points.
Here the benchmark period I consists of the first
66,000 samples, while the period II containing
84,000 points is monitored with respect to the
benchmark period. It is suspected that the period
II has experiences some changes in the perfor-
mance. The computation results from the pro-
posed monitoring procedure are depicted in Fig.1.
The upper-left subplot shows the maximal and
minimal eigenvalues, while the lower-right one
shows the full spectrum of eigenvalues and their
cumulative percentage. It can be easily seen from
the plot that the largest eigenvalue is far above
one, which implies that the control performance
of period II in this eigenvector direction is much
worse than that of the benchmark. The loading
score plots for the largest and smallest eigenvector
directions are given in Fig.1(b) and (c), respec-
tively. It is clear that the variable 4, i.e. loop
FC0902, contributes most significantly in the first
eigendirection. Thus we may conclude that the
control performance of monitored period along
the largest eigendirection, especially loop FC0902,
deteriorated significantly. In other words, there
exists a great margin to improve the performance
by re-tuning along this direction as well as the
loop FC0902. This can serve as an instructive tool
for control engineers to maintain the control sys-
tem. On the other hand, the smallest eigenvector
stands for the direction of improved performance
over the benchmark. Fig 1(c) shows that loops 5

and 3 have large contributions to the improved
performance.

6. CONCLUDING REMARKS

MIMO control performance monitoring has en-
joyed great development recently as it is one of the
most important issues in practice after the con-
trol design. The minimum variance benchmark is
usually considered a good starting point although
it requires significant process information. For
MIMO performance monitoring we demonstrate
in this paper that covariance based monitoring is
more appropriate when strong interactions occur
among controlled variables. The covariance-based
monitoring is extended to benchmarking any two
covariance matrices and diagnosis of worse or bet-
ter performance directions is developed.

Due to limited space several related issues could
not be covered in this paper but they are impor-
tant. One is the deterministic performance loss
due to loop oscillations and the need for setpoint
tracking. Another is the dual task of control per-
formance monitoring and statistical process mon-
itoring. The current situation is that both issues
are studied assuming the other part is problem
free. In practice the problems co-exist and only
routine operation data are available to tell one
problem from another. The integration of control
performance monitoring and process monitoring
deserves further study.
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Table 1. The name tag and description of ten
loops from a power boiler unit

Variable No. Loop Identification Description
1 FC0400 PB feed water flow control
2 FC0618 Oil burner air flow control
3 FC0620 Bark-air flow control
4 FC0902 Bark feed rate control
5 FC0922 Bark air firing control
6 LC0403 PB drum level control
7 PC0603 Combustion air pressure
8 PC0609 Furnace pressure control
9 PC0622 Over-fire air pressure
10 PC0904 Steam head pressure control
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Fig. 1. Generalized eigen-analysis results for the
period II against the user-defined benchmark
period I with (a) the maximal and mini-
mal eigenvalues; (b) the eigenvector direction
corresponding to the maximum eigenvalue;
(c) the eigenvector direction corresponding to
the minimum eigenvalue; (d) the eigenvalue
spectrum and the corresponding cumulative
fractions.

IFAC - 600 - ADCHEM 2006


