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Abstract:
In this paper, measurement based parameter and state estimation in Simulated
Moving Bed plants with nonuniform columns is investigated. The estimation
strategy presented uses the available measurements of the concentrations in the
product flows and in one internal flow which is realistic for industrial applications.
The estimation task is solved in a decentralized fashion. The correction of the
parameters and the state is performed only for the column positioned in front
of the respective measurement. Convergence is achieved by the shift of the
product concentration measurements. The local estimation problems are solved
by Extended Kalman filters. The scheme is validated for a propanolol isomers
system with nonlinear adsorption isotherms.
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1. INTRODUCTION

Preparative chromatographic separation processes
are an established separation technology in down-
stream processing in the pharmaceutical and fine
chemicals industries. Most industrial applications
are performed discontinuously, leading to low pro-
ductivity and high solvent consumption. In recent
years, continuous Simulated Moving Bed SMB
processes are increasingly applied due to their
advantages with respect to the utilization of the
adsorbent and reduced solvent consumption. The
SMB process consists of several chromatographic
columns which are interconnected in series to con-
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stitute a closed loop. An effective counter current
movement of the liquid phase and the solid phase
is achieved by periodical and simultaneous switch-
ing of the inlet and the outlet ports by one column
in the direction of the liquid flow (Figure 1).

Since SMB processes are characterized by mixed
discrete and continuous dynamics, spatially dis-
tributed state variables with steep slopes, and
slow and strongly nonlinear responses of the con-
centrations profiles to changes of the operating pa-
rameters, they are difficult to control. An overview
of recent achievements in the optimization and
control of chromatographic separations can be
found in (Engell and Toumi, 2005). In (Toumi and
Engell, 2004a) and (Toumi and Engell, 2004b),
a nonlinear optimizing control scheme was pro-
posed and successfully applied to a 3-zone reac-
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tive SMB process for glucose isomerization. In
each switching period, the operating parameters
are optimized to minimize a cost function. The
product purities appear as constraints in the op-
timization problem. In the optimization, a rig-
orous model of the general rate type is used.
Plant/model mismatch is taken into account by
error feedback of the predicted and the measured
purities. In addition, the model parameters are
regularly updated. In (Toumi et al., 2005), the
control concept was extended to the more complex
processes Varicol and Powerfeed that offer a larger
number of degrees of freedom that can be used for
the optimization of the process economics while
satisfying the required product purities. A slightly
different approach to the control of SMB processes
was reported by (Erdem et al., 2004a) and (Erdem
et al., 2004b). Here, the online optimization is
based upon a linearized reduced model which is
corrected by a Kalman filter that uses the con-
centration measurements in the product streams.
In this work, the switching period is considered as
fixed, while in the previously mentioned work it is
a parameter in the optimization. In (Toumi and
Engell, 2004a) and (Toumi and Engell, 2004b), the
prediction is based on the assumption that the
columns are uniform (i.e. they all show the same
behavior) and that the modelling errors are small.
However, the properties of each individual column
differ since they have different effective lengths,
different packings with adsorbent and catalyst (for
the case of reactive chromatography) and the col-
umn temperatures can exhibit some variation. In
this paper, an estimation concept is presented for
the estimation of parameters and states of chro-
matographic columns with individual properties.
We assume that measurements of the concentra-
tions in one internal and in both product streams
are available. The estimation of the column pa-
rameters can be used to detect degradations of a
column during continuous operation of the plant.

The remainder of this paper is structured as fol-
lows: in the next section, the model of the SMB
process is introduced. Section 3 reports the ob-
server design for the SMB plant. Simulation re-
sults are presented in section 4. Finally, a sum-
mary and outlook for future research are given.

2. PROCESS MODEL

The columns of the SMB process can be divided
into four different zones according to their relative
position with respect to the inlet and the outlet
ports as depicted in Figure 1:

(i) Zone I between solvent and extract port:
desorption of the more strongly retained
component

(ii) Zone II between extract and feed port:
desorption of the less retained component

(iii) Zone III between feed and raffinate port:
adsorption of the more strongly retained
component

(iv) Zone IV between raffinate and solvent port:
adsorption of the less retained component.

Q
De ExQ

switching of
columns

liquid flow

zone IIzone I zone III

QFe

Recycle ReQ

zone IV

RaQ

Fig. 1. Schematic diagram of the SMB process

From mass and concentration balances, the re-
lations at the inlet and the outlet nodes can be
expressed as

Desorbent node : QIV + QDe = QI

cout
i,IV QIV = cin

i,IQI

Extract node : QI − QEx = QII (1)

Feed node : QII + QFe = QIII

cout
i,IIQII + ci,FeQFe = cin

i,IIIQIII

Raffinate node : QRa + QIV = QIII

i = A,B ,

where QI,II,III,IV denote the internal flow rates of
the corresponding zones I, II, III, IV, QDe, QEx,
QFe, and QRa are the external flow rates of the
respective inlet/outlet ports and, cout

i,j and cin
i,j de-

note the concentrations of the component i in the
stream leaving or entering the respective zone j.
In this paper, the separation of a racemic mixture
of propanolol, a β-blocker, (Toumi et al., 2003)
at high purities with a 1/2/2/1 column config-
uration is investigated. Accurate dynamic mod-
els of multi-column continuous chromatographic
processes consist of dynamic process models of
the single chromatographic columns, the node bal-
ances (1) which describe the connection of the
columns, and the port switching. The chromato-
graphic columns are described accurately by the
general rate model (Guichon et al., 1994) which
accounts for all important effects of a radially
homogeneous column, i.e. mass transfer between
the liquid and the solid phase, pore diffusion, and
axial dispersion. The concentration of component
i is given by ci in the liquid phase and qi in the
solid phase. Dax is the axial dispersion coefficient,
u the interstitial velocity, εb the void fraction of
the bulk phase, kl,i the film mass transfer resis-
tance, and Dp the diffusion coefficient within the
particle pores. The concentration within the pores
is denoted by cp,i. The following set of partial
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differential equations can be obtained from a mass
balance around an infinitely small cross-section of
the column:

δci

δt
+

(
1 − εb

εb

)
3kl,i

rp

(ci − cp,i|r=rp
)

= Dax,i

δ2ci

δz2
− u

δci

δz
(2)

(1 − εb)
δqi

δt
+ εp

δcp,i

δt
− εpDp,i

1

r2

δ

δr

(
r2 δcp,i

δr

)

= 0 (3)

with appropriate initial and boundary conditions

ci,t=0 = cin
i ; cp,i,t=0 = cp,i(0, r, x),

δci

δz

∣∣∣∣
z=0

=
u

Dax,i

(
ci − cin

i

)
;

δci

δx

∣∣∣∣
z=L

= 0 (4)

δcp

δr

∣∣∣∣
r=0

= 0;
δcp

δr

∣∣∣∣
r=rp

=
ki

εpDp,i

(
ci − cp,i,r=rp

)
.

The adsorption equilibrium behavior and the sys-
tem parameters for the propanolol isomers inves-
tigated here have been determined experimentally
by (Toumi et al., 2003). The adsorptive behavior
is modelled by a modified competitive Langmuir
adsorption isotherm (the components are referred
to as A and B):

qi = H1
i cp,i +

H2
i cp,i

1 +
∑
j

k2
j cp,j

i = A,B. (5)

For numerical simulation, an efficient discretiza-
tion (Gu, 1995) is used where a finite element
discretization of the bulk phase is combined with
orthogonal collocation of the solid phase.

3. STATE AND PARAMETER ESTIMATION

3.1 Estimation strategy

A concept for parameter and state estimation
of a SMB process has to take into account the
available measurement information as well as the
dynamics of the SMB model. We assume here that
both concentrations of the species are continu-
ously measured in the two product streams and in
the recycle stream. This is the maximum amount
of information that is available in a production
plant. Thus, the positions of the measurements in
the considered six column SMB plant vary within
a cycle of operation as indicated by Figure 2.
The recycle measurement is permanently located
behind the last physical column while the two
product measurements move with the product
ports in the direction of the liquid flow by one
column when a period has passed. Hence, there
permanently is a measurement behind the last
physical column over the whole cycle, while each
of the remaining columns have a product mea-
surement located at their respective outlet for two

periods in each cycle (one cycle has six periods).
Concerning the dynamics of the SMB model, it

1
st

period 1 32 4 5 6

2
nd

period 1 32 4 5 6

3
rd

period 1 32 4 5 6

6
th

period 1 32 4 5 6

4
th

period 1 32 4 5 6

5
th

period 1 32 4 5 6

Fig. 2. Measurement positions at the physical
columns for a cycle of operation (black: prod-
uct streams; grey: recycle stream)

can be shown that local column parameters have
a greater influence on the concentrations at the
outlet of the local column compared to column
parameters at a distance to the considered mea-
surement. The influence of distant parameters is
subject to a considerable time delay because the
liquid flow is the link between the columns and
reaches the considered column outlet only after
several switching periods.

We therefore propose to perform the estimation by
a set of individual, local observers that estimate
the states as well as the parameters for one column
only, as illustrated by Figure 3. A local observer
is activated within the estimation scheme when
there is a measurement located at the outlet of
its respective column. The columns are of course
coupled since a column with an error prone set
of parameters that is in front of a column with an
active local observer causes a disturbed input flow
to the estimated column (indicated by the distur-
bance d in Figure 3). However, the influence of the
disturbed input on the local estimation is reduced
by the movement of the product measurements.
One period before a local estimator is activated
by a product measurement, its corresponding in-
put is corrected by the same measurement sen-
sor that is positioned before the column at that
time. Since SMB processes are operated at a pe-
riodic steady state with high requirements for the
product purities, the dissolved components move
with the liquid flow by about one column within
one period. Hence, the outlet concentrations of
the column are influenced to a large extent by

IFAC - 613 - ADCHEM 2006



the inlet concentrations that were measured one
period earlier. Therefore, the influence of model
errors of the remaining columns on the local es-
timation of one column is not a dominant factor
in the local estimation. However, the estimated
input concentration profile of column 6 for which
the estimation is performed continuously deviates
from the true profile and hence in this column
errors of the parameter estimation are induced
until a sensor is located in front of this column
(see Figure 2).

d

HA HB

Fig. 3. Column-by-column estimation of parame-
ters and states

3.2 Extended Kalman filter

In the local Extended Kalman filters, the para-
meters that are estimated are defined as states.
At each time step k the dynamics f̂ i of the col-
umn model are linearized around the local state
estimate x̂i (each column has 100 states). The
algorithm of the Extended Kalman filters is

(1) Prediction:

x̂i
k+1,k = x̂i

k,k +

∫ tk+1

tk

f̂ i(x̂i, x̂i−1)dt (6)

P i
k+1,k = Ai

kP i
k,kAiT

k + Qi (7)

(2) Correction:

Ki
k = P i

k,k−1C
iT (CiP i

k,k−1C
iT + R)−1

(8)

x̂i
k,k = x̂i

k,k−1 + Ki
k(yi

k − ŷi
k,k−1)s

i
period (9)

P i
k,k = (I − Ki

kCi)P i
k,k−1, (10)

where P i is the error covariance, Ki the Kalman
gain, Ci the output matrix, Qi the state noise co-
variance matrix, R the measurement error covari-
ance matrix, yi are the measurements, and Ai

k the
linearized local dynamics of column i. The EKFs
were tuned by varying the diagonal values of the
matrices P0, R, and Qi. si

period is a binary integer
variable that takes the value of one if the local
observer of the corresponding column is activated
and zero otherwise. The activation trigger si

period

of the local observers is related to Figure 2.

4. RESULTS

For the results presented, the measurements are
assumed to be subject to uniformly distributed
white noise with a maximum deviation of 5% of

the highest concentration value of the SMB pro-
file. Furthermore, it is assumed that the product
measurement devices are placed in front of the
product pumps, otherwise a deformation of the
concentration profiles would be encountered. The
Henry coefficients H1

i are chosen as estimated
parameters since they have the strongest influence
on the process performance. The chosen operating
point achieves high purities but is not optimal
with respect to solvent consumption.

Figure 5 shows the estimation of the parameters
of column 1 in the case of a step in the Henry
coefficient H1

A (more strongly adsorbed compo-
nent) of column 3 (scenario 1). The estimator of
column 3 converges to the true value. The esti-
mators of columns 1, 2, 4, and 5 are not affected
by the error in column 3. However, the input of
column 6 is not corrected during one period and
the Henry coefficient H1

A of column 6 is therefore
increased. When the estimator of column 3 has
converged, the estimator of column 6 converges
as well. Figure 6 depicts the estimation of the
Henry coefficients of all six physical columns in the
presence of considerable model errors (scenario
2). The individual model coefficients are initial-
ized at the nominal values that are given in the
appendix while the true values of the individual
Henry coefficients of the respective columns differ
considerably from the nominal values. The pro-
posed estimation concept manages to estimate all
individual Henry coefficients and to reduce the
state estimation error at the beginning of a period

J0 =

√√√√nstate∑
i=1

(x̂(i)smb,0 − x(i)smb,0)2 (11)

substantially (see Figure 4), apart from the error
caused by the measurement noise. In Figure 7 the

40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

state error

J

period

Fig. 4. State error J forscenario 2

estimation of the parameters of column 6 whose
local estimator is activated over the whole cycle
is compared to the corresponding measurement
information for one cycle. For the investigated
operating point, the concentration fronts (con-
centration increases or decreases drastically) are
in the 2nd, 4th, and 6th period. The measured
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Fig. 5. Parameter pertubation of column 3 (step introduced and estimation started at the 37th period,
scenario 1); lines: model, dotted lines: reference plant, black: H1

A, grey: H1
B
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Fig. 6. Parameter estimation for wrong Henry coefficients of all columns (estimation started from the
37th period on, scenario 2); lines: model, dotted lines: reference plant, black: H1

A, grey: H1
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Fig. 7. Column 6 (permanent measurement): pa-
rameter estimation and measured concentra-
tion profile over one cycle for scenario 2

extract and raffinate profiles correspond to period
2 and 5 modified slightly by the individual column
properties. When a concentration front moves
over the extract port, the Henry coefficient H1

B

of the respective column is corrected by the local
estimation. However, at the raffinate port (period
5) only a small part of the front is measured. The
correction of the Henry coefficient H1

A related to
the more strongly adsorbed component A is rather
slow. This is due to the specific operating point.

5. CONCLUSION

A parameter and state estimation scheme for an
SMB process with individual columns applying
local Extended Kalman filters based on only three
measurement positions has been presented. The
observer performs well. The individual column
parameters can be reconstructed. It is expected
that the performance of a model predictive control
scheme can be improved by applying a decen-
tralized state estimation. In future research, the
implementation of Moving Horizon Estimator is
planned.

SYSTEM PARAMETERS

separator length L = 10cm

separator diameter D = 1cm

adsorption coefficients H1

A
= 2.68

H2

A
= 0.9412

k2

A
= 340 cm3

g

k2

B
= 262 cm3

g

H1

B
= 2.2

H2

B
= 0.4153

film transfer resistance kl,A = 0.5610−2 cm
s

kl,B = 0.3310−2 cm
s

void fraction εb = 0.4

particle void fraction εp = 0.5

particle diameter dp = 20µm

particle diffusion coefficient Dp = 10−5 cm2

s

density ρ = 1.0 g

ml

viscosity η = 6.8510−4 g

cms

axial diffusion coefficient Dax = 10−6 cm2

s

feed QFe = 0.31 ml
min

cA,Fe = cB,Fe = 7.5 g

l

period τ = 2.05min

extract QEx = 1.94 ml
min

raffinate QEx = 1.12 ml
min

eluent QDe = 2.75 ml
min

recycle QRe = 4.80 ml
min

measurement error covariance R = 0.01I (I: unity matrix)

initial error covariance P0 = 300I, P0,6 = 30

state noise covariance Qx = 100I,Qx,6 = 0.01I

qp = 0.05, 0.01
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