
ADCHEM 2006 

International Symposium on Advanced Control of Chemical Processes 

Gramado, Brazil – April 2-5, 2006

 
 
 
 
 

 
 
 
 
 
 
 

CHALLENGES OF MODELLING A POPULATION BALANCE USING WAVELET
 
 

Johan Utomo, Nicoleta Balliu, Moses O. Tadé1

Department of Chemical Engineering, Curtin University of Technology,
GPO Box U 1987, Perth, WA 6845, Australia.

 
 
 

 
Abstract: Crystallization is one of the oldest separation technologies due to its ability to
produce a range of bulk products to high purity chemicals. Aspect of controlling the size
distribution is important for downstream operations and characteristics of products. Two
cases of population balance problems are considered in this paper to show limitations of
some utilized methods. Those cases present the sharp transition phenomena in the particle
size distribution. A wavelet-based method by Liu and Cameron (2001) is applied and
compared with other conventional methods based on Finite Difference, Orthogonal
Collocation and Orthogonal Collocation with Finite Elements. The result show that the
wavelet method is faster, more accurate and more efficient in solving the population
balance problems. Copyright © 2005 IFAC
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1. BACKGROUND

Crystallization is one of the oldest separation
technologies and plays a key role regarding the
quality of the products and the economy of a whole
plant. This process is used to manufacture large
quantities of bulk materials as well as high purity
chemicals.

Although crystallization technology has been
established for a long time it is difficult to operate
and control. Controlling particle size distribution
(PSD), shape distribution and crystal purity are
challenging due to the complexity and non-linearity
of the process and because of lack of reliable on-line
instrumentation to measure the key parameters
(Rohani, et al. 1999; Braatz 2002). These properties
affect downstream operation such as filtration,
washing, drying, mixing and formulation (Braatz
2002; Fujiwara, et al. 2005). They also affect the
end-usage properties such as entrainment liquid after
dewatering, dissolution rate for pharmaceutical
products, caking
�
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properties, fluidization properties, pneumatic
handling properties, bulk density, and esthetic
appearance (Randolph and Larson 1988).

According to Braatz (2002), inadequate control of
particle size and shape can result in unacceptably
long filtration or drying time, or in extra processing
steps, such as re-crystallization or milling process.
Shekunov et al. (2000) claim that in the
pharmaceutical industry, there were advance control
systems over drug identity and purity, however
control over the physical properties such as form and
crystallinity remains inferior. It is indicated that there
are many attractive challenges arising from the
pharmaceutical processes which can be used for
further research directions especially in modelling
and building advanced control systems.

Hulburt and Katz (1964) introduced a modelling
approach for particulate processes more than 41
years ago. This approach is well known as the
concept of population balances. The population
balance equation (PBE) can be defined as a
mathematical description characterizing particles
undergoing the mechanisms of birth, growth, death
and leaving a certain particle phase space. In
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crystallization, those mechanisms can be categorized
as nucleation, growth, agglomeration and breakage.

A very sharp transition profiles problem commonly
occurs in many chemical engineering cases. For
example, concentration profiles in chromatography
processes, temperature and activity profiles in solid
catalyst, the profiles of reaction in fixed bed reactors
as well as the particle size distribution for a well-
mixed batch crystallizer in which crystal breakage
and agglomeration may be neglected. These
processes are represented by parabolic partial
differential equations. Effective solutions for these
models require certain type of numerical methods to
be implemented.

2. NUMERICAL METHODS

2.1 Previous Methods

Most papers addressing population balance problems
discussed techniques to solve systems from the
unidimensional to multidimensional population
balance models. Many numerical methods have been
proposed such as method of moment, method of self-
preserving distributions, method of weighted
residuals, sectional method, and the discretization
methods. Other methods, which have been used to
solve PB problems, are also based on Monte Carlo
method and finite element method. To sum up, the
above methods can be categorized into four types i.e.
finite difference approach, spectral methods (e.g.
orthogonal collocation), finite element and other
approach. There are major drawbacks from those
methods such as high computationally cost, lack of
stability and accuracy of the solution and the in
applicability of the solved models for
implementation in control based models. Extensive
discussion of those methods can be found in the
literature (Kostoglou and Karabelas 1994;
Ramkrishna 2000; Vanni 2000). In this paper,
simulation studies will be conducted to compare the
computational efficiency, the accuracy as well as the
stability between the finite difference method (FD),
the orthogonal collocation (OC), the orthogonal
collocation with finite element (OCFE) and the
wavelet-based method.

2.2 Finite Difference Methods

Finite difference methods have been commonly used
for the solution of all types of partial differential
equations (ODEs) systems. FD method approximates
the continuous function )(xf with Taylor expansion

series (Hangos and Cameron, 2001). They can be a
first order or second order approximations. In our
case, FD method is used to approximate the first
partial derivative of population density over its size
( xn ∂∂ ) and converts the PDE into a set of ODEs.

2.3 Orthogonal Collocation

This technique was developed more than 70 years
ago and applied in various cases of boundary value

problems. The trial functions are chosen as sets of
orthogonal polynomials and the collocation points
are the roots of these polynomials. The solution can
be calculated from the collocation points. The use of
orthogonal polynomials is to reduce the error as the
polynomial order increases (Gupta 1995; Hangos and
Cameron 2001).

2.4 Orthogonal Collocation with Finite Elements

The combination of dividing the regions into a
number of elements and by applying orthogonal
collocation techniques for each element can improve
the solution where the profile is very steep. In the
region where there is a sharp transition, numbers of
small elements can be applied while the remainder
utilizes larger size of elements. Selection of the
elements size is therefore essential.

2.5 Wavelet-based method

In 2001, Liu and Cameron proposed wavelet based
method to solve population balance problems. They
developed Wavelet Orthogonal Collocation (WOC)
and Adaptive Wavelet Orthogonal Collocation
(AWOC) to solve agglomeration in batch vessel.
Further information about wavelet method can be
found in Liu’s papers (Liu and Cameron 2001; Liu
and Cameron 2003; Liu and Tade 2004). To our
knowledge, wavelet method combined with Galerkin
method was first applied in chemical engineering
area by Chen et al. (1996) to solve the breakage
mechanism in a batch crystallizer.

Significant advantages of using wavelet method are
the accuracy in producing solutions in the sharp
transition regions, computationally efficient
solutions, stable and easily implemented solution that
is applicable to another system. These advantages are
related to the characteristic of wavelet method such
as, localization properties in space and scale,
hierarchical organization, sparse coefficients and
easy handling of the derivatives as well as non-linear
and integral terms. However in Liu and Cameron
(2001), there was no comparative study between
wavelet method and any other methods.

2.6 Daubechies orthonormal wavelets

Wavelet can be used as a basis function to represent a
certain function. In the wavelet function, two-basis
functions can be found, the scaling function and the
wavelet function. The scaling function coefficient
illustrates a local average of the function (coarse
illustration) and the wavelet function coefficient
describes detailed information of the function
(refinements) that cannot be found from the average
coefficient. Compared to Fourier expansion, wavelet
approximation give smaller error and is highly
localized at discontinuity regions (Nielsen 1998).
Compared to the traditional trigonometric basis
functions which have infinite support, wavelets have
compact support, therefore wavelets are able to
approximate a function by the placement of the right
wavelets at appropriate locations. From Daubechies’s
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work (1988), scaling function (φ ) and wavelet

function (ψ ) can be described by a set of L (an even

integer) coefficients (pk : k = 0,1,…, L-1) through the
two-scale relationship:

( ) ( )∑
−

=

−=
1

0

2
L

k
k kxpx φφ (1)

and the wavelet function

( ) ( ) ( )∑
−=

− −−=
1

2
1 21

Lk
k

k kxpx φψ (2)

The support for the scaling function is in the interval
0 to (L-1), whilst for the wavelet function is in the
interval (1-L/2) to (L/2). The coefficients pk are
called the wavelet filter coefficients.

Denote L2(R) as the space of square integrable
functions on the real line. Let Vj be the subspace as
the L2-closure of the linear combination of:

( ) ( )kxx jj
jk −= 22 2φφ (3)

for k { }...1,0,1...,−=∈ Z . A function ( )xf jV∈
can be represented by the wavelet series:

( ) ( )∑
∈

=
Zk

jkjk xfxf φ (4)

The multi-resolution properties of wavelets give
another advantage to represent functions in
differential equations which can be solved
numerically (Motard and Joseph 1994). Detailed
information about Daubechies orthonormal wavelets
can be found in Daubechies (1988).

2.7 Wavelet Orthogonal Collocation(WOC)

This method was proposed by Betoluzza and Naldi
(1996) for solving partial differential equations. In
2001 it was developed and applied for solving
population balance problems by Liu and Cameron
(2001). The interpolation functions are generated by
autocorrelation of the usual compactly supported
Daubechies scaling functions )(xφ . Then the

function θ called autocorrelation function verifies
the interpolation property due to the orthonormality.

( ) ( ) ( ) 10 == ∫ dxxx φφθ (5)

and

( )∫ ≠=−= 0,0)()( ndxnxxn φφθ (6)

The approximate solution of our problem will be a
function uj in the term of its dyadic points to obtain
the wavelet expression:

( ) ( ) ( )∑ −= − nxnuxu jj
jj 22 θ (7)

Detailed information can be found in Liu and
Cameron (2001, 2003) and Bertoluza and Naldi
(1996).

3. CASE STUDIES

We consider two case studies of population balance
which have sharp and dramatic transition phenomena
in their particle size distribution in the batch
crystallizer. Even though the case studies considered
here are simple, since the analytical solutions are
available for comparison purposes, the more complex
models can be solved using the methods described
above.

3.1 Case I: Nucleation and size-independent growth

The population balance for nucleation mechanism
and size independent growth is described by the
partial differential equation:

( )
0

,),(
B

L

tLn
G

t

tLn =
∂

∂+
∂

∂
(8)

where n is number of particle (population density),
L is dimensionless particle size, ]2,0[∈L , G is the

growth rate ( 1=G ) and Bo is the nucleation rate,
)exp(0 LB −= . The initial condition is 0)0,( =Ln

and the boundary condition when 0=L , 0),0( =tn .

The analytical solution for this case is:

[ ] 0;1)exp()exp(),(

0;)exp(1),(

>−−−−=
<−−−=

tLtLtLn

tLLtLn
(9)

3.2 Case II: Size-independent growth only

One dimensional population balance for size
dependent growth mechanism only is described by
the partial differential equation:

( )
0

,),( =
∂

∂+
∂

∂
L

tLn
G

t

tLn
(10)

with:

( ) ( ) ))1(100exp(0,;0,0 2−−== LLntn (11)

The independent growth rate ( 1=G ) is constant. The
range of dimensionless particle size, ]4,0[∈L . The

analytical solution for the second case is :

))10)1.((exp(),( 2×−−−= tGLtLn (12)

4. DISCUSSION

All the simulation results presented have been
executed on a 3.00 GHz Pentium IV – 1.00
Gigabytes of RAM running under Windows 2000. A
MATLAB® version 7.0.1 was used as the
computation software to simulate the models.
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4.1 Case I: Nucleation and size-independent growth
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Fig.1. Dynamic distribution of 8 segments of
particles in case I

Firstly we divide the size interval range into 8
segments and simulate the dynamic distribution of
particles. It is seen from Figure 1 that using 0=L the
smallest segment of particles remains zero, while the
other increase by following the underdamped
mechanism until the overdamped mechanism for the
largest segment of particles ( 2=L ). We found that
the dynamic particle distribution gives the stable
responses.

Finite difference method is employed to solve this
problem numerically. The results are shown below in
Figure 2 by using 101 discretization points (FD 101).
At early time ( 6.0=t ) particles are distributed
heavily over the left region (maximum at 6.0=L )
up to the final time of simulation, particles are
mostly distributed on the right segment (maximum at

8.1=L ). The numerical FD 101 solution is accurate
for any segment except the sharp transition region. If
we increase the number of discretization point it will
increase the accuracy of the solution of the whole
region (including the peak region). However, it
requires more of computational effort due to the
increase of ordinary differential equations (ODEs)
needed to be solved.
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Fig. 2. PSD at various times using FD method

Other methods that can be used to solve this problem
are, as previously mentioned Orthogonal Collocation
(OC) and Orthogonal Collocation with Finite
Element (OCFE). Detailed description of these

method can be found in many literature such as
Davis (1984), and Finlayson (1980).

Comparisons between the numerical solutions using
OC, OCFE and FD are presented in Table 1 and
Figure 3. Table 1 shows the comparative error results
for the utilized methods, which are SE (Sum of
Errors), AE (Average of Errors) and ME (Maximum
of Errors), respectively.

In terms of computation time, even though the FD
101 consists of more ODEs than others, it gives
reasonable computation time, only 1.37 s. On the
other hand, the OCFE 16, which has only 16 ODEs
contributes 2.21 s in computation. We can conclude
that all methods described have reasonable
computation time. The only problem is in the
accuracy of the solution in the sharp transition
region.

OCFE 31 gives the overpredicted result at the
maximum point, whilst the other methods give
underpredicted result at that point. OC method
cannot be used because it only represents 8 points of
solution and it does not cover the entire region
proportionally. On the other hand, all OCFE methods
perform better than the 101 points of FD method in
the sharp transition region. It is indicated by the
maximum of errors (ME) results of the OCFE 16 and
the OCFE 31 which are less than the FD 101. Even
though both methods use less number of collocation
points, they successfully present accurate solution
and especially in the peak region. It is revealed that
the OCFE methods are superior compared to others.

Table 1 Comparative simulation results for case I

Method Time
(s)

SE AE ME

FD 101 1.37 8.21e-005 0.0091 0.00200
OC 8 0.90 0.0151 0.1230 0.07060

OCFE 7 0.19 3.3965e-004 0.0184 0.00210
OCFE 16 2.21 1.3513e-004 0.0116 0.00064
OCFE 31 3.34 1.0248e-004 0.0101 0.00110
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Fig. 3. PSD case I using various methods

At this point we can conclude that for the sharp
transition region, the OCFE methods can be used
instead of ordinary FD methods with reasonable
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computational time and accurate solution. Another
question that arose from this study is whether those
methods are able to track a very dramatic changing
profile as shown in the next case.

4.2 Case II: Size-independent growth only

Figure 4 shows that there is a very steep gradient
profile in the particle size distribution. The particles
are distributed mostly in region of 3.27.1 −=L .
According to Liu et.al (2000) OCFE method can
avoid spurious (unstable) responses under steady
state conditions, however, it may fail for the transient
model. In our case-II’s simulation, unfortunately the
OCFE method cannot be applied, since it gives
unstable solution. On the other hand, the FD methods
even with a very large point of discretization (401
and 801 points) represent inaccurate solutions in
terms of the maximum value and also the particle
distribution itself. As we can see from the Figure 5,
there is a shift phenomena in particle distribution,
and it shifts 0.5 unit of dimensionless size compared
to analytical solution.
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Fig. 4. Analytical solution for case II

Table 2 Comparative simulation results for case II

Method Time
(s)

SE AE Max(n)

FD 401 1.42 0.05334 0.2309 0.70717
FD 801 4.62 0.06844 0.2384 0.81654
FD 1201 11.07 0.05842 0.2417 0.86605
Wave 8 0.92 9.91e-6 0.0032 1.00
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Fig.5. PSD case II using FD and Wavelet method
Other method must be considered here. Wavelet
orthogonal collocation method is employed since it
can represent a sharp transition region due to its good
localization properties both on time and frequency.
By using 8-level of wavelet approximation series
(resolution), the solution can represent the accurate
value at the peak point. Regarding the error
parameters, wavelet solution appeared to be superior
compared to previous methods. By using 8-level of
resolution, we utilize 257 (256+1) wavelet
collocation points for the solution and 255 numbers
of differential equations. Given that the properties of
wavelet which is capable of representing high
localization both in space and frequency, allow the
preview of the behaviour of the solution at certain
time, from localization properties of the solution at
previous time-step. Moreover, the computation time
needed for FD methods is greater than the wavelet
method.
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Fig. 6. Comparison of FD solution in case II

In our computational study, we used Runge-Kutta
method in MATLAB® to utilize numerical
integration of set of ODEs and all the parameters are
set to their default value.

The exponential term in the initial condition
contributes to the nature of the solution. The
numerical solutions become highly non linear. At the
early time ( 0=t ), the numerical solution agrees
with the analytical solution. As the time increase the
shifted solution becomes larger. We can conclude
that the use of the FD technique for this case will
generate highly inaccurate results. Furthermore we
can see that the solution of the FD method still
cannot track the dramatic change in particle size
distribution even if there was no shift phenomena. As
we can observe from Figure 6, the maximum value of

7.0),( =tLn for FD 401 and 8.0),( =tLn for FD

801. By increasing the number of discretization
points from 801 to 1201 points, the solution still fails
to move from 0.5 unit delay however it increased the
maximum value of n from 0.816 to 0.866. As can be
seen from the Figure 6, there was a small increase in
reaching the maximum value by adding 400 points
from 801 to 1201 points compared with 401 to 810
points. Comparison between Wavelet method and FD
methods; and FD methods with OC and OCFE
methods employed in this paper provide us some
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insight into the superiority of wavelet in terms of
accuracy and computation time.

Further research on wavelet application in chemical
engineering field is essentially required. From the
computational efficiency result shown, with the
wavelet algorithms, the model is suitable to be
employed in online control system. Model of
population balance with multidimensional properties
is necessary for certain cases. Even though from
control engineers’ perspective, low-order models are
needed. The challenges for modelling a population
balance with wavelet-based method is to define the
suitable complexity for various cases and reduce the
appropriate models for design the control strategies.
Efforts will be made in future work to validate the
results of this study using experimental data from the
literature.�

5. CONCLUSION
 
In this work, accurate, fast and general approach by
wavelet method is the most efficient way to simulate
the case of a very sharp transition phenomenon in
population balance system. For case-I, the nucleation
and size-independent growth only, the sharp change
region can be described effectively by OCFE
methods. It, however fail to simulate case-II where
there was a very steep gradient in PSD profiles. The
FD methods in both cases fail to provide accurate
solutions. In case-II where there was a shift of 0.5-
unit size they give incorrect prediction of the PSD
profiles due to the presence of the highly non-linear
term. Wavelet solution gives the fast, stable and
accurate solution. The selection of the level of
resolution being used depends on the characteristic
of the solution itself. If the solution is highly non-
linear, the level of resolution must be increased.
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