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Abstract: In the present study a population balance approach is described to follow the 

time evolution of molecular polymer properties in free-radical polymerizations. The 

model formulation is based on the fixed pivot technique (FPT) which was properly 

adapted to calculate the combined molecular weight - long chain branching distribution. 

At first the predictive capabilities of the proposed model were tested against experimental 

measurements and simulation results taken from the open literature, on molecular weight 

distribution (MWD) of branched polymers. Then the MWD calculated by the FPT was 

compared with the MWD calculated by the method of classes. However the FPT proved 

to be a faster method for the calculation of the MWD. Copyright © 2006 IFAC.
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1. INTRODUCTION 

The molecular properties (e.g., molecular weight 

distribution, MWD, copolymer composition 

distribution, CCD, long chain branching distribution, 

LCBD, etc.) of polymers are directly related to their 

end-use properties (e.g., mechanical, rheological, 

etc.). Hence, the ability to control accurately the 

molecular architecture of polymer chains in a 

polymerization reactor is of profound interest to the 

polymer industry. This presupposes a thorough 

knowledge of the polymerization kinetics and the 

availability of advanced mathematical models to 

quantify the effects of process operating conditions 

on the molecular polymer properties. 

Branched polymers are characterized by the presence 

of long or/and short branches attached to the main 

backbone of a polymer chain. Thus, the end-use 

properties of branched polymers will also depend on 

the number, the type and the distribution of the 

branches. Long chain branching has a strong impact 

on the rheological behavior of the polymer. In fact, it 

affects the flow properties of the polymer melt (e.g., 

extensional viscosity, shear viscosity and elasticity) 

as well as the polymer solid state properties (e.g., 

orientation effects and stress induced crystallization). 

Thus, the elucidation of the LCB formation and its 

correlation with the various rheological and physical 

polymer properties are two subjects of significant 

research interest. 

The free-radical polymerization of vinyl acetate 

(VAc) is a typical system that leads to the formation 

of long chain branching that largely affect the MWD 

and thus, the polymer rheological properties. In this 

system, transfer to monomer and to polymer 

reactions as well as terminal double bond 

polymerization largely control the molecular weight 

developments via the formation of highly branched 

polymer chains.  

In the past twenty years, several mathematical 

models dealing with the calculation of the MWD of 

branched polymers have been published (Lorenzini 

et. al., 1992; Tobita and Hatanaka, 1996; Nordhus et. 

al., 1997; Thomas, 1998; Pladis and Kiparissides, 

1998, Iedema et. al., 2000). A variety of numerical 

methods have been employed to calculate the MWD 

of branched polymers, including ‘numerical 

fractionation’ (Teymour and Campbell, 1992, 1994), 

Monte-Carlo simulations (Tobita, 1996; Tobita and 

Hatanaka, 1996), global orthogonal collocation 

(Canu and Ray, 1991; Nele et. al., 1999) and discrete 

weighted Galerkin (Wulkow, 1995). In general, the 

above numerical attempts suffer from two key 

kinetic limitations, (e.g., the use of the quasi steady 

state approximation (QSSA) for ‘live’ radical chains 

and the absence of gel and glass effect). 

The ‘numerical fractionation’ method can provide 

information on the full MWD of branched polymers 

by dividing the total polymer chain population into a 

finite number of classes of polymer chains having 

narrow MWDs. The method assumes that the 

transition from one class of polymer chains to a 

higher one occurs exclusively by a geometric growth 

mechanism (e.g., termination by combination 

polymer and terminal double bond reactions are 
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reactions). However, in systems in which transfer to 

important, this assumption will not be sufficient. The 

use of global orthogonal collocation methods for the 

prediction of the MWD in free-radical 

polymerization systems is partially successful 

because a single interpolation polynomial is only 

employed for the entire collocation domain. As a 

result, prior knowledge on the type of the 

approximated distribution is required. Furthermore, 

global collocation schemes have been proved 

inadequate in accommodating complex MWDs (e.g., 

bimodal distributions, MWDs for branched 

polymers, etc.). Pladis and Kiparissides (1998) 

employed a polymer chain fractionation approach to 

calculate the molecular weight – long chain 

branching bivariate distribution for branched 

polymers. The total population of the polymer chains 

was divided into a number of classes with respect to 

the number of long chain branches. However, in 

addition to the well-known problem of closure of the 

‘higher order’ moments, the reconstruction of the 

overall MWD at high monomer conversions and high 

LCB content, requires a very large number of classes 

to reduce the approximation errors associated with 

the high molecular weight fractions of the 

distribution. Monte Carlo simulations are 

straightforward techniques that can generally handle 

complex kinetic mechanisms but usually require 

significant computational effort for the determination 

of the MWD. Finally, the discrete weighted Galerkin 

formulation, even though is computationally 

demanding, provides a powerful tool for the 

prediction of the MWD in complex polymerization 

systems. However, the approximation of the infinite 

summation terms (e.g., resulting from termination by 

combination reactions) requires special treatment. 

The present study deals with the numerical solution 

of the dynamic bivariate population balance 

equations (PBEs) for ‘live’ and ‘dead’ polymer 

chains, arising in highly branched polymer systems. 

The fixed pivot technique (Kumar and Ramkrishna, 

1996) is employed to solve the resulting system of 

bivariate population balance equations. The validity 

of the proposed numerical method is tested by a 

direct comparison of model predictions with 

experimental data on the number average degree of 

branching, the number and weight average molecular 

weights for the free-radical polymerization of VAc 

(Thomas, 1998). The calculated bivariate MW-LCB 

distribution is also compared with simulations 

obtained by an improved method of classes (Pladis 

and Kiparissides, 1998) as well as with predictions of 

MWD obtained by Monte Carlo Simulations (Tobita 

and Hatanaka, 1996). 

2. KINETIC MECHANISM AND RATE 

FUNCTIONS 

In the present study, the following kinetic 

mechanism was employed to describe the formation 

of highly branched polymers: 

Initiator decomposition: 

2dk
I PR

Chain initiation: 

0,1
Ik

PR M P

Propagation: 

, , 1
pk

b n b nP M P

Chain transfer to monomer: 

, , 0,1
fmk

b n b nP M D P

Chain transfer to solvent: 

, , 0,1
fsk

b n b nP S D P

Reaction with terminal double bond: 

, , 1,
dbk

b n r m b r n mP D P

Chain transfer to polymer: 

, , , 1,
fpk

b n r m b n r mP D D P

Termination by combination: 

, , ,
tck

b n r m b r n mP P D

Termination by disproportionation: 

, , , ,
tdk

b n r m b n r mP P D D

The symbols ,b nP  and ,b nD  denote the respective 

‘live’ and ‘dead’ polymer chains with ‘b’ long chain 

branches and a chain length equal to ‘n’. The above 

kinetic mechanism includes initiation and 

propagation reactions, termination by combination 

and disproportionation, molecular weight control 

reactions via transfer to monomer and chain transfer 

agent (solvent) and long chain branching formation 

via transfer to polymer and terminal double bond 

reactions. Polymer chains with terminal double 

bonds, formed via termination by disproportionation 

and transfer to monomer reactions, can react with 

‘live’ polymer chains to produce long chain 

branches. Transfer to polymer reactions involve the 

transfer of reactivity from a growing polymer chain 

to a ‘dead’ polymer chain. More specifically, a 

hydrogen atom abstracted from the backbone of a 

‘dead’ polymer chain leads to the formation of a new 

‘live’ polymer chain with an internal radical center 

and a ‘dead’ polymer chain. 

In the present study, to reduce the number of 

bivariate population balances to be numerically 

solved, it was assumed that the concentration of the 

‘dead’ polymer chains having a terminal double 

bond, was some known fraction of the ‘dead’ 

polymer chains (Baltsas et. al., 1996). Based on the 

above kinetic mechanism and assumptions, the 

following dynamic population balance equations for 

the ‘live’, , ,P b n t , and ‘dead’, , ,D b n t , polymer 

chains can be derived: 

, ,

, ,1
P b n t

P b n t
r

V t
  (1) 

, ,

, ,1
D b n t

D b n t
r

V t
  (2) 

The net formation rates for the ‘live’ and ‘dead’ 

polymer chains are given by the following equations: 
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Net formation rate of ‘live’ polymer chains of length 

‘n’ with ‘b’ branches : 
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Net formation rate of ‘dead’ polymer chains of 
length ‘n’ with ‘b’ branches: 

, ,

0 2

0 1 0 1

1

0 1 0 1

, , , , , ,

, , , , , , , ,

1
, , , , , , , ,

2

b n

b n b n

b n

N N

fm fs fpD b n t

z x

N N N N

fp db

z x z x

N N b n

td tc

z x z x

r k M k S P b n t k P b n t xD z x t

k nD b n t P z x t k D b n t P z x t

k P b n t P z x t k P z x t P b z n x t (4) 

where n  is the Kronecker’s delta function [e.g., 

1n  if 0n  and 0n  if 0n ]. Nb and Nn

denote the maximum number of branches and the 

maximum chain length, respectively. It should be 

pointed out that the actual number of rate equations 

for the ‘live’ and ‘dead’ polymer chains will depend 

on the total degree of polymerization, that may be of 

the order of hundreds or/and thousands monomer 

units. Consequently, the computational effort 

associated with the solution of the complete set of 

differential equations becomes prohibitively high for 

the most cases of interest and makes the on-line 

application of such a model unrealistic. To deal with 

the above high-dimensionality problem, several 

methods have been proposed to reduce the infinite 

system of differential equations into a low-order 

system of DAEs.  

In the present work the fixed pivot technique was 

applied for the solution of the bivariate PBEs [see 

eqs. (3) and (4)] to predict the joint MW-LCB 

distribution of branched polymers. 

3. FIXED PIVOT TECHNIQUE 

The fixed pivot technique was properly adapted for 

solving the bivariate population balance equations  

for the ‘live’ and ‘dead’ polymer chains [see eqs (3) 

and (4)]. The method assumes that the overall 

polymer chain population can be assigned to selected 

discrete points, also called ‘grid’ points. The 

bivariate PBEs which are derived from the 

application of the proposed method are then solved 

at the discrete points. Thus, the initial infinite system 

of PBEs, is reduced to a system of discrete-

continuous differential equations. Since the chain 

populations in various chain lengths and number of 

branches are assumed to exist only at the 

representative discrete points, specific reaction steps 

(i.e., termination by combination, propagation, chain 

transfer to polymer and terminal double bond), 

involving such chain populations, can result in the 

formation of new polymer chains whose chain 

lengths and/or number of branches do not correspond 

to the representative grid points. According to the 2-

D FPT, the polymer chains that do not correspond to 

specific grid points are incorporated in the set of 

discrete-continuous dynamic PBEs in such a way 

that any four moments (two in each dimension), of 

the joint MW-LCB distribution, are exactly 

preserved. 

In the bivariate PBEs, the distribution of polymer 

chains with a specific number of branches is 

considered to be continuous over the chain length 

domain and the number of long chain branches 

domain. Based on the original developments of 

Kumar and Ramkrishna (1996), the total branch and 

chain length domains, are divided into a number of 

finite elements Ne,b and Ne,n respectively. Let P(j,i,t) 

and D(j,i,t), be the concentrations of the ‘live’ and 

‘dead’ polymer domain, which correspond to the 

discrete point u(j,i) of the 2-D domain (see Fig. 1).  

Fig. 1: The two-dimensional grid which can be used 

with the FPT. 

Let n(i) and b(j) be the corresponding middle points 

in the ith element (un(i), un(i+1)) and jth element (ub(j), 

ub(j+1), respectively. When a new polymer chain is 

formed within the 2-D discrete element (e.g., due to 

termination by combination or transfer to polymer 

reactions), its concentration is assigned to the four 

neighboring grid points in such a way so that 

selected moments of the MWD are exactly 

preserved. On the other hand, polymer chains formed 

via initiation, transfer to monomer, transfer to 

solvent or termination by disproportionation 

reactions, are always assigned to the existing grid 

points. From the application of the FPT to the 

bivariate PBEs of the ‘live’ and ‘dead’ polymer 

chains [see eqs (3) and (4)] we obtain the following 

system of continuous-discrete differential equations:  
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Continuous-discrete differential equations for linear 

‘live’ polymer chains: 
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Continuous-discrete differential equations for 
branched ‘live’ polymer chains: 
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Continuous-discrete differential equations for linear 

‘dead’ polymer chains: 
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Continuous-discrete differential equations for 

branched ‘dead’ polymer chains: 
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for j = 1, 2,…, Ne,b and i = 1, 2,…, Ne,n

Assuming that the zero and first moment of the 

MWD are preserved, the matrices ,A i k , , ,B i k m ,

,C j l , , ,T j l q  and , ,O j l q , can be calculated by 

the following expressions: 
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where  is the Kronecker’s delta function. 

The resulting differential-discrete equations were 

integrated in time to calculate the dynamic behavior 

of the ‘live’ and ‘dead’ bivariate number chain 

length distributions. The concentrations of the ‘dead’ 

polymer chains at the grid points were then used to 

reconstruct the weight chain length distribution 

(WCLD) that corresponds to a specific grid point of 

the branch domain: 

, , , , 1n nW j i t n i D j i t u i u i    (14) 

The overall WCLD was then calculated by the 

weighted sum of all polymer branch distributions: 

,

, ,

0

0 1

, , 1

,

, ,

e b

e b e n

N

n n

l
total N N

l k

n i D l i t u i u i

W i t

n k D l k t

  (15) 

For the discretization of the chain length and branch 

domains a logarithmic discretization rule was 

employed. Typically, the chain length and branch 

domains were partitioned into 50 and 8 finite 

elements, respectively, leading to a total number of 

800 discrete-continuous differential equations. 

To ensure that the selected number of elements was 

sufficient for the accurate reconstruction of the 
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MWD, the following convergence criterion was 

established: 

, ,

1 1

0 1

, ,

e b e nN N

l k

n k D l k t (16) 

 is a convergence parameter with typical values in 

the range of (0, 0.03). 

Finally, the number and weight average molecular 

weights and the number and weight average degrees 

of branching are calculated using the following 

equations: 

Number average molecular weight: 

, , , ,
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Weight average molecular weight: 
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Number average degree of branching: 
, , , ,

0 1 0 1

, , , ,

e b e n e b e nN N N N

n

l k l k

B b l D l k t D l k t (19)

Weight average degree of branching: 
, , , ,

0 1 0 1

, , , ,

e b e n e b e nN N N N

w

l k l k

B n k b l D l k t n k D l k t (20)

where, , ,D j i t , denotes the concentration of 

polymer chains with chain length n i  and number 

of branches b j .

4. RESULTS AND DISCUSSION 

The free-radical polymerization of VAc was selected 

as a representative example for the production of 

branched polymers. In this system, transfer to 

monomer and polymer largely control the MWD of 

the poly(vinyl acetate) produced. Furthermore, the 

monomer radicals that are produced from the transfer 

to monomer reaction, propagate giving ‘live’ and 

‘dead’ polymer chains with a terminal double bond. 

Thus, terminal double bond polymerization is an 

important reaction for this system, producing highly 

branched polymer chains. 

It is well known that for the VAc polymerization 

system, the termination kinetic rate constant becomes 

gradually controlled by the diffusion phenomena as 

the monomer conversion and hence the viscosity of 

the mixture increases (Hamer and Ray, 1986). In 

order to account for this variation the termination 

rate constant was expressed as the sum of two terms, 

one taking into account the effect of the diffusion of 

polymer chains, dif
tk , and the other describing the 

so-called ‘residual termination’, res
tk :

dif res
t t tk k k (21) 

The analytical calculation of the diffusion controlled 

termination rate constant is provided in the work of 

Keramopoulos and Kiparissides (2002).

The numerical performance of the FPT was first 

tested by a direct comparison of numerical results 

with experimental measurements on number average 

degree of branching Bn, for the free-radical 

polymerization of VAc (Thomas, 1998). Two 

temperatures (i.e., 600C and 800C) and different 

initiator concentrations (i.e., 2,2’-azobis(2-

methylpropionitrile, AIBN) were used in the 

comparison analysis (see Fig.2). 

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

2.5

 T = 60
0
C

 T = 80
0
C

B
n

% Monomer Conversion

Fig. 2: Predicted and experimental number average 

degree of branching with respect to monomer 

conversion (T=600C and [I0] = 5 ×10-5 mol/L; 

T=80 0C and [I0] = 1×10-4 mol/L). 

Figure 3 shows a comparison between the MWDs 

calculated by the FPT and the method of classes, at 

different monomer conversions. In both cases, the 

AIBN initial concentration was equal to 1.6 × 10-3

mol/L while the polymerization temperature was 

600C. Notice that both methods are capable of 

predicting the MWDs up to very high monomer 

conversions. It was found that a number of 160 

classes, leading to a total number of 960 differential 

equations, was sufficient for the convergence of the 

method of classes. 

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

1

2

3

4

5

6

X = 90%

X = 83%

X = 72%

X = 50%

Chain Length

W
ei

g
h

t 
F

ra
ct

io
n

 x
 1

0
5

 Classes

 FPT

Fig. 3: Predicted MWDs via the application of the 

FPT and the method of classes, at different 

monomer conversions

In Figure 4 the MWD calculated by the FPT is 

compared with the distribution obtained by Monte 
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Carlo simulation (Tobita and Hatanaka, 1996). The 

reactor temperature was 600C, and the kinetic rate 

constants for the free-radical polymerization of VAc 

were taken from the original work of Tobita and 

Hatanaka (1996). The comparison was made for a 

specific value of monomer conversion equal to 85%. 

It can be seen that the MWD calculated by the FPT is 

in good agreement with the one obtained by the 

Monte Carlo simulation. The observed discrepancy 

in the tail of the distribution can be attributed to the 

use of the QSSA in the Monte Carlo simulation and 

to the inherent statistical difficulties of Monte Carlo 

simulations associated with the sampling of chains 

placed at the tail of the distribution
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Fig. 4: Comparison of the calculated total weight 

fraction distribution at monomer conversion 

equal to 85%. The discrete points are the 

calculated results by Tobita and Hatanaka (1996). 

The continue line represents the simulated results 

using the FPT. 

The FPT is capable of predicting the entire joint 

molecular weight - long chain branching distribution. 

The calculated combined MW-LCB distributions are 

depicted at 600C at a specific value of monomer 

conversion (i.e., 90%) as it can be seen in Figure 5.
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Fig. 5: Predicted combined MW-LCB distribution at 

90% monomer conversion (simulation 

conditions same as in Figure 3).
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