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Abstract: Steady-state detection has been an important tool in data processing, for

nonlinear model identification, real time optimization, variability analysis, and so on. In

this article, it is proposed a new methodology applied to multivariate systems for steady-

state detection based on PCA and wavelets. The proposed approach is applied to an

industrial distillation column. The combination of PCA and wavelets allows quantifying

the steady-state considering a single variable generated by a PCA projection.

Copyright © 2006 IFAC
 
Keywords: waves, signal analysis, multivariate systems, Principal Component Analysis,

steady-state.
 
 
 
 

1. INTRODUCTION

 
An efficient method for steady-state detection is of

great importance for process analysis, optimization,

model identification, and data reconciliation. These

applications require data under steady-state or very

close to it.

With this aim, several methods have been developed.

Most methods are based on statistical tests.

Narasimhan et al. (1986) presented a Composite

Statistical Test - CST (1986) and a Mathematical Test 

of Evidence - MTE (1987). In CST method,

successive time periods are defined and evaluated

according to covariance matrices and sample mean. In 

MTE method, differences in averages are compared

to the variability within the periods.  More recently,

Cao and Rhinehart (1995) proposed a method based

on moving average or conventional first-order filter

which is used to replace the sample mean.

But these approaches evaluate the process status over 

a period of time, instead of a point in time. This is an 

important detail for on-line applications. Besides

these techniques consider only the presence of

random errors, and it is known that nonrandom errors

are present in form of spikes for example (Jiang et al.,

2003).

The wavelet transform (WT) has been widely applied, 

in signal and image processing, singularity detection,

fractals, trend extraction, denoising, data suppression

and compression, due to its simple mathematical

application and because it provides time-frequency

localization simultaneously. 

The WT is a tool that cuts up data or functions into

different frequency components, and then studies

each component with a resolution matched to its scale 

(Daubechies, 1992). In other words, WT consists of

scaled and shifted versions of a mother-wavelet (the

original wavelet). The process of multiplying the

signal by scaled and shifted wavelets over all time

produces wavelet coefficients that are function of

scale and position. It is like a resemblance or

correlation index between the section of the analyzed

signal and the wavelet. One advantage of wavelets is

to work with global or local analysis. Other

advantages are to denoise a signal without

degradation of the original signal (without losing

information), to choose the resolution level, to obtain

signal derivatives and to process unsteady signals. 

Hence, in this work wavelets are used as a tool for

steady-state detection of process signals. The

methodology is based on a fast algorithm of two

channel subband coder using conjugate quadrature
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filters or quadrature mirror filters. Process trends are

extracted from raw measurements via wavelet-based

multi-scale processing by eliminating random noise

and nonrandom errors. This "clean" signal still

preserves the nuances of the original signal. Then the

process status is measured using an index with value

ranging from 0 to 1 according to the wavelet

transform modulus of the extracted process signal and 

historical data. This index has a great application

since it can be used for data compression and

determination of optimal operating points for

example.

Since most chemical processes are multivariable, it is

necessary to have a procedure which makes possible

to quantify how close it is to the steady-state.

Therefore, it is necessary a way to deal with

multivariable systems. Usually, a unique index for the 

whole process would be recommended, since it is

easier to analyze. Jiang et al. (2003) suggest selecting 

key variables and combining them through the

Dempster’s balance rule. Thus, it is necessary to

calculate a status index for each key variable and, by

the balance rule, it is necessary to attribute a weight

for each variable. Instead, in this work it is proposed

to use the PCA (Principal Component Analysis)

approach to combine all variables of a multivariable

process into a single steady state measurement index,

which would be representative of the whole process.

2. WAVELET TRANSFORM APPLIED TO

STEADY-STATE DETECTION

2.1. Background of Wavelet Transform Concepts

Wavelet Transform (WT) is a tool for non-stationary

signal analysis, and it is applied to steady-state

detection in this work.

The Discrete Wavelet Transform (DWT) represents a 

signal as successive approximations of the original

signal and it can be considered as the convolution of

the input signal f with a wavelet function ψ, as seen in

Eq. (1), according to the decomposition level.
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considered as a composition of approximations
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abnormal sudden change occurs in the signal, the

detail coefficients will be affected (Jiang et al., 2000). 
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where aj are the approximation coefficients and dj (or

W2
jf) are the detail coefficients or WT modulus.

It is specially attractive if the ψ is the first-order

wavelet, i.e., the first-order derivative of the scaling

function dxxdx )()( φψ = , so thus Eq. (1) can be
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However, there is a fast algorithm to compute the

DWT, computed as presented in Eq. (5).
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The output aj+1 of a FIR filter to any given input may

be calculated by convolving the input signal aj with

the impulse response expressed by the coefficients of

the filter hj. For a given filter x with coefficients x[n],

xj[n] denotes the filter obtained by inserting 2
j
-1 zeros

between every x coefficient.

The process of synthesizing or reconstructing the

signal is mathematically computed by the Inverse

Discrete Wavelet Transform. Hence, the process of

reconstruction can be expressed as the sum of the

details, or modulus maxima, and the coarser

approximations.

2.2. Procedure for steady-state detection

The proposed technique consists of a process trends

extraction of raw data using wavelet-based multi-

scale analysis and after detection of the process status 

with extracted process trends at various scales. The

process status is measured using a status index with

value ranging from 0 to 1 according to the WT

modulus of the extracted process signal. This

methodology is based on Jiang et al. (2000, 2003).

The process begins with a decomposition of the

original signal (WT on process data) generating aj and 

dj at each scale j. The algorithm is based on two

quadrature mirror filters h and g proposed by Mallat

and Zhong (1992), where hj and gj are filters with

2
j
-1 zeros interpolated between two successive

coefficients of h and g respectively. The wavelet

function used is a quadratic spline.

In the next step, soft-thresholding is applied on dj for

scales 1 < j < J, obtaining dj’. The threshold for the

first scale is assigned as the average of the modulus

maxima of historical data, because at scale j = 1 the

WT modulus is completely dominated by noise.
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Afterwards, abnormal peaks, such as spikes, are

detected and treated with symmetric extension

technique for scales 2 < j < J, resulting in new dj’ and 

aj’. Spikes are identified if a couple of maximum WT 

modulus with opposite sign occurs, which duration is

less than a time interval tp considered from historical

data. This corresponds to a sudden change in the

process data. The threshold for identification of a

spike p is computed by the variance of WT modulus

of historical data at a defined scale. The duration

p2 - p1 of the spike is determined from the average of

WT modulus of historical data attributed a weight.

Later the signal is reconstructed using the threshold

coefficients aj’ and dj’, from scale j = J to 2. Jiang et

al. (2003) suggest reconstructing up to j = 1, but as

level 1 is dominated by noise it was removed from the 

reconstruction step.

Another WT is applied on the reconstructed signal,

and the extracted trend fs is obtained at the

characteristic scale j = s, determined by the response

time constant and the sample time. The detail

coefficients of this last decomposition will indicate

the process status.

The status index B is basically determined by the

derivatives of the extracted trend fs, expressed as WT1

and WT2.

Equation (6) expresses the estimation of the status

index, where Ts, Tw and Tu are thresholds estimated

from historical data. 
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For more details, refer to Jiang et al. (2003).

3. APPLICATION OF PCA

3.1. Steady-state detection based on key variables

As mentioned before, the original methodology for

steady-state detection (Jiang et al., 2003) is

essentially developed for one process variable. For

multivariate systems, the author suggests selecting

key variables, calculating the status index for each

one and then combining them using the Dempster’s

combination rule (Shafer, 1976). But this is an off-

line methodology and it has some drawbacks

considering its implementation.

The first drawback is related to the selection of the

key variables (i), which requires good process

knowledge. The key variables must be uncorrelated

and should cover the whole system. Another

drawback is that in the Dempster’s combination rule

some weights wi must be established, as shown in Eq. 

(7).
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In this work, we are proposing to eliminate these

drawbacks through the Principal Component Analysis 

(PCA) discussed as follows.

3.2 Steady-state detection based on principal
components

Principal Component Analysis (PCA) is a linear

dimensionality reduction technique, optimal in terms

of capturing the variability of the data. It determines a 

set of orthogonal vectors (loading vectors) ordered by 

the amount of variance explained in the loading

vector directions (Chiang et al., 2001). The loading

vectors are calculated by solving the stationary points 

of the optimization problem shown in Eq. (8).
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where v are the loading vectors and X is the data

matrix. The stationary points are computed via

singular value decomposition.

The proposed methodology based on PCA has some

advantages. It can be easily applied to multivariate

systems. The process variables are combined in a new 

orthogonal variable so that there is no need of

choosing key variables and weighting them. So the

combination rule is different and it is simpler to be

applied.

The steady-state detection based on principal

components begins with a dimensional reduction by

using PCA. Once the variables are chosen, they are

transformed into new variables which are linear

combinations of the original variables.

These new variables are then individually computed

with WT for steady-state identification, as described

in section 2. 

4. INDUSTRIAL APLICATION

The industrial plant consists of a toluene column

which is fed by the bottom stream of a benzene

column. The toluene column has 60 valve plates and

the feed plates are 30 and 36. The temperature of

stage 20 is controlled through the reboiler steam flow 

rate. There are 5 flow measurements, 9 temperature

measurements throughout the column and a top

pressure measurement, as shown in Fig. 1.
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Fig. 1 – Measurements of the toluene column.

A time period was selected and its temperature profile 

is shown in Fig. 2.

Fig. 2 – Temperature profile.

5. RESULTS

In this section, the PCA and Dempster’s approaches

are compared using the temperature profile of the

industrial toluene distillation column. In this study, all 

selected variables are considered with same

importance, what is translated into the following

Dempster’s combination rule:

∏
=

=
N

i

im tBtB

1

)()( (8)

Equation (8) implies that the column will be

considered in steady-state if all variables are in

steady-state at the same instant of time.

5.1. Setting the algorithm parameters

To initialize the algorithm, it is necessary to inform

the typical process time constant τ.  The time constant 

used in the case study is τ = 30 min. This value was

estimated through the approximation of the step

response of a 10-order ARX identified model

obtained with the Matlab
®

 System Identification

Toolbox. The corresponding step responses were

approximated through the SK method (Sundaresan

and Hrishnaswamy, 1977), which delivered the time

constant.

As a consequence, the parameter that represents the

time interval over which a change usually persists, tp,

is estimated as 1/3-1/5 of τ. This parameter is used for 

identification of abnormal peaks, as cited in section 2.

5.2. Status index by key variables

In Dempster’s approach, the decision variables should 

be non-correlated. For the case study, these variables

were chosen through a correlation analysis, which

selected the following variables: the temperatures

TI02 and TI21, the top pressure PI18 and the bottom

level LIC09. The plant data of these variables are

shown in Fig. 3.

Fig. 3 – Selected key variables for the steady-state

determination of the distillation column.

The results obtained for each key variable are

presented in Figs. 4 to 7.

Fig. 4 – Representation of the steady-state detection

using the WT for the temperature TI02.
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Fig. 5 – Representation of the steady-state detection

using the WT for the temperature TI21.

Fig. 6 – Representation of the steady-state detection

using the WT for top pressure PI18.

Fig. 7 – Representation of the steady-state detection

using the WT for bottom level LIC09.

The status is computed for each variable and the

overall status is computed by a combination as the

one expressed in Eq. (8).

Fig. 8 – Combination of the status indexes of the key 

variables results in a unique status index Bm for 

the whole distillation column.

5.3. Status index by principal component analysis

The temperature profile (Fig. 2) is composed by the

9 temperature measurements indicated in Fig. 1. The

analysis of the temperature profile by PCA results in

two new variables, expressed here as t1 and t2, as

shown in Fig. 9.

Fig. 9 – Resulting variables by PCA: t2 and t1.

For each variable t1 and t2, it was made a steady-state

analysis and a status index was computed for each

one. The input parameters were the response time

constant and the historical data period. This period

was considered as the first 600 points of t1 and t2. It is

important here to emphasize the adequate historical

period selection. This is an important point for the

correct status index estimation. Historical data must

bring representative features of the process variable,

but without periods of unsteady conditions.

Figures 10 and 11 show the steady-state analysis,

where f is the original signal (for t1 or t2), fs is the

extracted trend, WT1 is the first-order wavelet

transform, WT2 is the second-order wavelet transform,

and B is the status index.
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Fig. 10 – Representation of the steady-state detection 

using the WT for the first orthogonal variable t1.

Fig. 11 – Representation of the steady-state detection 

using the WT for the variable t2.

The combination of the two indexes B according

Eq. (8) results in a unique index Bm, shown in

Fig. 12, which represents the column status.

As seen in Fig. 12, the variables t1 and t2 have the

same results, i.e., the same steady and non-steady

time periods. This is a general observation that

indicates it is not necessary to analyze the status of all 

orthogonal variables. Analyzing only the first

variable, t1 in this example, already brings enough

information for the column status determination.

Fig. 12 – Combination of the status indexes B1 and B2

results in a unique status index Bm for the whole 

distillation column.

6. CONCLUSIONS

 
The results shown in Fig. 8 and 12 are very similar

for the discussed industrial case study. Both

approaches practically lead the same conclusion.

However, the PCA approach is much easier and

simpler for dealing with variables and does not

require weighting attribution. The variables are

selected and linearly combined by PCA without need

of knowing what are the principal variables and what

are exactly their influences in the process. This is an

important point for practical applications. Another

advantage is the status estimation of only one variable

instead of all key variables, what considerably

reduces computational effort.
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