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Abstract: Two fault detection approaches are compared using a Projection Pursuit 

Regression (PPR) algorithm: i- a classification approach where the fault detection PPR 

model is trained based on the class numbers and ii- an estimation approach where the PPR 

model is trained to predict the value of the process variable that define the class 

boundaries and then the corresponding class is identified by comparing the estimated 

value versus the limits of the fault classes.  The comparison is carried on for simple 

illustration examples, to elucidate the main issues, and for a copolymerization process. 

The classification approach is found superior provided that the training data closest to the 

boundaries are located at equidistant locations from these boundaries. 
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1. INTRODUCTION 

One of the goals in fault detection or classification 

problems is to establish, from measurements, that a 

specific variable value lies within a certain class 

defined by a range of values of that variable. Thus, 

for fault detection problems, the outcomes are a set 

of discrete values for the variable in question. On the 

other hand the values of the variables that define the 

boundary of a class can be continuously predicted 

from measurements using for example a state 

estimator. The prediction surface for the variable to 

be estimated is usually continuous.  However, such 

an estimation model could be easily used for fault 

detection by comparing the predicted value of a 

variable to the boundaries defining the different 

classes or faults and then assessing the class or fault. 

The additional benefit of having continuous 

estimates of certain variables is that they could be 

used for feedback or feed-forward control. This 

paper is addressing the differences and relative 

advantages and disadvantages between these two 

approaches, i.e. the classical fault detection approach 

where a model is trained to predict directly a class 

versus the estimation based approach where the 

model is trained to predict the value of a variable and 

then the corresponding class is identified from that 

value. For clarity, the former will be referred to as 

the classification model whereas the later will be 

referred to as the estimation-based detection model. 

Intuitively, it is possible to expect that as the range 

of values, defining a class for the purpose of fault 

detection, becomes smaller and smaller, a fault 

detection model will eventually converge to an 

estimation model. Does this imply that fault 

detection is a “rough” version of estimation? 

Furthermore, will it be always true that a fault 

detection model will require less experiments for 

training as compared to the estimation based 

approach?  It will be shown in this manuscript that 

the answers to these questions is not always 

affirmative and they are directly related to the level 

of noise, the linearity of the problem and the specific 

modelling methodology utilized to obtain the 

detection or estimation models. Many different 

modelling techniques have been proposed for 

estimation or fault detection problems. For example, 

Kalman filters have been often used for estimation or 

detection when a mechanistic model is available. 

Also, a number of empirical techniques have been 

investigated ranging from Neural Networks (Bakshi, 

1999) to multivariate statistical modelling methods 

such as Partial Least Squares (Yoon and MacGregor, 

2004). Projection Pursuit Regression (PPR) is an 
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additional multivariate modelling technique 

(Friedman, 1981) based on basis functions that are 

tailored specifically to the particular set of data to be 

modelled resulting generally in less parsimonious 

models with lower sensitivity to noise. The authors 

of this work have conducted extensive research on 

the use of PPR for class detection and have 

compared this modelling fault detection 

methodology with other techniques such as back 

propagation neural networks and Radial Basis 

Functions Neural networks. They have found in these 

studies that PPR provides a good tradeoff between 

sensitivity to noise and generalization accuracy as 

compared to other neural network based 

methodologies. (Lou, 2003). For instance, for a 2-

dimensional problem, Lou found that PPR results in 

approximately 50% of the classification error 

obtained with a Haar Wavenet-based model and 35% 

of the classification error obtained with a 

Backpropagation Neural Network model. Therefore, 

this study will conduct the comparison between 

direct detection and estimation-based detection using 

specifically PPR based models. 

This paper will be organized as follows. Section 2 

will briefly summarize the PPR algorithm and its 

application to detection and estimation problems. 

Section 3 will discuss simple examples that were 

specifically tailored to elucidate some of the issues 

discussed in the introduction regarding the 

comparison between detection and estimation 

problems using PPR. Section 4 will discuss a more 

involved chemical engineering problem, the 

estimation of impurities in a copolymerization 

process from conversion and temperature 

measurements.  Finally, conclusions are presented in 

Section 5. 

2. PROJECTION PURSUIT REGRESSION (PPR): 

BRIEF SUMMARY 

PPR is a multivariate statistical technique originally 

proposed by Friedman and Stuetzle (1981). The 

technique can be viewed as a 3 layer-neural network 

composed of an input layer, one hidden layer and an 

output layer. The input layer operates on inputs or 

independent variables x whereas the output layer 

produces the outputs or dependent variables y.

Three sets of parameters: projection directions given 

by weights between the input and the hidden layers 

, projection ‘strengths’ given by 

weights between the hidden and the output layers) 

, and the a priori unknown 

activation functions in the hidden layer 

kpk
T
k ,...,1

qkkk ,...,1

kf , are 

estimated via the least squares criteria by minimizing 

the squared error cost function: (Utojo and Bakshi 

(1999)) 
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Each response variable, , is modeled 

as a weighted linear combination of the activation 

function 

),...2,1( qiyi

kf .  Each of these functions is a nonlinear 

function or ‘look-up’ table, of a weighted linear 

combination of the weighted independent variables.  

The output of a hidden function fk is decided 

according to the nearest neighbor or neighbors in the 

‘look-up’ table. Projection Pursuit Regression learns 

function by function and layer-by-layer cyclically 

after all the training patterns are presented.

Specifically, it applies linear Least Squares to 

estimate the output-layer weights and the Gauss-

Newton nonlinear Least Squares method to estimate 

the input-layer weights. The optimization algorithm 

grows the model step-wise as in the Nonlinear 

Iterative Partial Least Squares (NIPALS) algorithm 

used for the Partial Least Squares (PLS) method.  

The main difference between PPR and PLS is that 

the later uses fixed-shape basis functions either 

linear or polynomial, while PPR uses adaptive basis 

functions, which are decided by the training data. 

The PPR basis functions are computed by smoothing 

the projected data versus the output by using a 

variable-span smoother such as the supersmoother 

(Friedman (1984)).  The adaptability of the basis 

functions in PPR allows it to determine more 

parsimonious models, i.e., using less basis functions 

than those modeling tools using fixed basis 

functions, for the same approximation error. A 

detailed mathematical description is given by Utojo 

and Bakshi (1999). 

Finally, in the introduction, two different forms of 

constructing a fault detection algorithm have been 

discussed, i.e. direct detection of the class or fault 

versus estimation of the variable value and then 

testing this value versus the ranges of values that 

define the classes or faults. The difference between 

the two methodologies is that for the first case, the 

output data y is discrete and it is typically given in 

terms of integer numbers whereas for the second 

method continuous values of y are used for training. 

In section 3 and 4 examples are given to compare 

these two methodologies based on the PPR 

regression algorithm. 

3. SIMPLE ILLUSTRATION EXAMPLES 

In this section two simple examples are presented to 

address the comparison between the direct-

classification approach versus the estimation-based 

detection approach. The examples have been 

specifically tailored to elucidate the issues especially 

with regards to sensitivity to measurement noise and 

nonlinearity of the underlying process for which 

faults are to be detected. 

3.1 Linear example 

In this example, a linear process model is 

represented by the following equation: 

 x=p (2) 

Where, x is the process measurement; p is the 

process variable.  The objective of a classification 

model is to find a specific class or fault based on a 
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measurement x. The classes are defined by the value 

of p as follows: 

 Class 1:  0<p 0.5     Class 2:  0.5<p<1 (3) 

Unlike the classification model, the goal of the 

estimation-based model is to establish a direct 

mapping from x to p, i.e., to predict the true value of 

p, according to the measurements, x.  The estimate of 

p is then used to decide which class x belongs to.  

Thus the inputs to the PPR model, referred to as the 

network input,  are the measured values of x and the 

output from the PPR model y, referred to as the 

network output, are equal to the class number for the 

classification model or to the estimated values of p

for the estimation-based model. 

For this example it is assumed that 3 measurements 

of x are available x=[0.2 0.6 0.95].  Correspondingly, 

for the training of a classification model, the PPR 

model is trained on a data pattern given by y= [1 2 

2]. Based on this training data the PPR model is 

tested for different values of x providing the results 

shown in Figure 1.  Clearly, the PPR model locates 

the class boundary at x=0.4 instead of x=0.5 that is 

the actual location of the boundary according to (3) 

resulting in misclassification of all the point in the 

range 0.4<x<0.5. The explanation for this 

misclassification is that the two training data on the 

two sides of class boundary (x=0.2 and x=0.6) are 

not symmetric with respect to the actual class 

boundary x=0.5.  Since the PPR output calculation is 

based on the nearest neighborhood concept, the PPR 

model locates the class boundary at the midpoint 

between the rightmost point of class 1 (x=0.2) and 

the leftmost point from class 2 (x=0.6) locating the 

boundary at x=0.4 with resulting misclassification of 

testing data. 

On the other hand the training data for a PPR 

estimation-based model are the actual measured 

values as follows y=[0.2 0.6 0.9] instead of y=[1 2 2] 

used for the classification model.  The estimation-

based model finds correctly the straight line relation 

described by (2) passing through all three training 

data.  Consequently for this case, the estimation 

model can make accurate prediction, even though the 

training data on two side of the class boundary are 

not symmetric with respect to it.  In this experiment, 

the estimation model predicts the testing data 

accurately, and the classification based on the 

estimation-based model does not produce any 

misclassification.  This example show that in a noise-

free linear problem, a PPR estimation-based model 

trained with the absolute values of the measurements 

works better than a PPR classification model trained 

with the class number values, especially when the 

training data in the two classes are not symmetric 

with respect to the actual class boundary.   

3.2 Linear Example using Training Data Corrupted 

by Noise 

The system in this example is the same as described 

by (2) above. In this example, there are also three 

training data, as in the previous example, with one 

training data in Class 1 and two in Class 2.  The 

training data pattern for the estimation model is 

plotted in Figure 2.  In this case the training data is 

corrupted by noise, and consequently is biased from 

the actual process model represented by the solid 

straight line in figure 2. 
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Figure 1. Testing results by a PPR classification 

model, for a 1-dimensional linear example with 

noise-free training data.  

In the training of a PPR classification model, the 

inputs are x=[0.2 0.8 0.9] and the outputs for training 

are the corresponding class numbers as follows y=[1 

2 2].  In this case the PPR classification model 

correctly locates the class boundary at x=0.5 because 

the rightmost data point from class 1 (x=0.2) and the 

leftmost data point from class 2 (x=0.8) are now 

symmetric with respect to the class boundary at 

x=0.5.  Then, the PPR classification model correctly 

predicts all faults by assigning class one to all 

measured x<0.5 and class 2 to all measured x>0.5.  

For the estimation based model the training data is 

given by x=[0.2 0.8 0.9] whereas the output data is 

y=[0.3 0.88 0.9]. In this case, due to noise and the 

sparseness of the training data a poor PPR 

estimation-based model is obtained. The prediction 

of the testing data for different values of x is quite 

different from their true value as shown in figure 3, 

resulting in misclassification of 10% of the tested 

points as illustrated in that figure. 

Thus, in a classification problem, the noise in the 

training data will not affect the classification 

accuracy, unless the noise level is so significant that 

it causes data to be assigned to the wrong class. 

Thus, the noise has no harmful effect on a 

classification model, if it is small enough such as the 

training data are still located in the correct classes.  

This is exactly the situation in this example. 

Therefore, the classification model makes no 

misclassification in the testing.  This example shows 

that, due to the discretization of the network outputs, 

a classification model may be less sensitive to the 

noise in the training data, as compared to an 

estimation-based model.   

3.3 Nonlinear Example using Noise-free Training 

Data 
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This example assumes a nonlinear model, and there 

is no noise in the training data.  The process model 

can be described by the following model. 

x = log10(p) (4) 

The classification is decided as follows. 

Class 1: p 3.16  Class 2: p>3.16 
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Figure 2. Training data with noise for a PPR 

estimation model, 1-dimensional linear example 
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Figure 3. Testing result by a PPR estimation model, 

1-dimensional linear example with noisy 

training data 

The training data for the estimation model is 

presented in Figure 4.  The training data in Class 1 

and Class 2 are represented by star and triangle 
symbols, respectively.  The class boundary is located 

at x=0.5 and p= 3.16.  For these data, the star and 

the triangle closest to the class boundary are 

symmetric with respect to it, in terms of the network 

input, x.  Consequently the PPR classification model 

accurately predicts the testing data without any 

misclassification. On the other hand, due to the 

nonlinearity of the problem and the sparseness of the 

training data, the estimation-based PPR model 

misclassifies testing data as shown in Figure 5.  The 

sudden change in the output around the input x=0.6
is a consequence of the particular basis functions that 

the PPR algorithm found for this problem and for the 

given training data. The training of the estimation 

model has been done to obtain a training error of 

zero for the 3 data points in Figure 4.  The difference 

between the estimation and the actual value results in 

10% misclassification out of the total data tested. 

Thus, although PPR is a suitable algorithm to 

describe nonlinear systems, the resulting estimation 

model is not accurate due to the sparseness of the 

training data.   
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Figure 4. Noise-free training data for a PPR 

estimation model, 1-dimensional nonlinear 

example 
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Figure 5. Testing result by a PPR estimation model, 

1-dimensional nonlinear example with noise-

free training data 

This example shows that, in a nonlinear problem, a 

classification model may need less training data to 

reach desirable classification accuracy, as compared 

to an estimation-based model.   

3.4 Nonlinear two-dimensional example 

The process model investigated here can be 

mathematically expressed as follows: 

 (5  x1)
0.5  (1.5  x2)

5 = p + v (5) 

First all the data are noise free, i.e. v is set to zero.  

The classification is decided by the value of the 

process variable, p.

Class 1:  4.0p

Class 2:  4.0p

The function is geometrically illustrated in Figure 6.  

A complete grid is sampled and plotted in the 

measurement domain in Figure 7.  A data point is 

either represented by a star or a plus, according to its 

corresponding class. The boundary between the 

classes shown in Figure 7 is not straight as in the 

previous one-dimensional examples. For training, the 
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following four process measurements are sampled:  

[0.025   0.025], [0.025   0.975], [0.975   0.025], and 

[0.975   0.975]. The corresponding output to train the 

classification model are y= [1 2 1 2] and their 

corresponding output values for training of the 

estimation-based model are y=[2.622 10-S, 2.366, 

1.637 10-7, 14.773] respectively. All, the points in 

Figure 7 are used for testing of the resulting PPR 

regression model. 

It is possible to show from figure 7 that the selected 

training data is located approximately symmetrically 

with respect to the class boundary corresponding to 

p=0.4, i.e. the training data in class 1 and class 2 are 

located at similar distances to the class boundary in 

terms of their x coordinates. The missclassification 

on the testing data are 16.8% for the estimation 

model, and 3.2% for the classification model, as 

summarized in Table 1. 

Figure 6. Function surface, 2-dimensional nonlinear 

example with noise-free data 
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Figure 7.  Testing data set for the 2-dimensional 

nonlinear example with noise-free data.  

Subsequently, the training data is corrupted by 

random noise.  The noise is assumed to be of a 

magnitude, so that the difference between each 

measurement (x1 or x2) and its true value is smaller 

than 0.5 times its sampling rate.  The training data 

for the estimation model are: [0.0320   0.0117], 

[0.0300   0.9579], [0.9301   -0.0556], and [0.9883   

0.9791] with the corresponding desired outputs for 

training the estimation-model y=[0.1489, 2.0961, - 

0.89646, and 15.499]. The classification model is 

trained with y=[0 1 0 1].  

The misclassification for the testing data is 

summarized in Table 1.  The results in Table 1 verify 

for the 2 dimensional case the following conclusion:  

for nonlinear systems and in the presence of 

measurement noise, a PPR classification model can 

outperform a PPR estimation-based model, when 

training data is located on the two sides of class 

boundary and in symmetrical locations with respect 

to it. This conclusion is consistent with the results 

obtained in the one-dimensional case. 

Table 1. Comparison of classification and estimation 

technique in two-dimensional examples

estimation classification

Misclassification 

percentage in 

noise-free data 
0.1675 0.0325

Misclassification 

percentage in 

noisy data 
0.215 0.04

estimation classification

Misclassification 

percentage in 

noise-free data 
0.1675 0.0325

Misclassification 

percentage in 

noisy data 

0.215 0.04

4. EXAMPLE OF A COPOLYMERIZATION 

PROCESS

Finally, the comparison between a pure classification 

model to an estimation-based PPR models is carried 

out for a fault detection task in a polymerization 

process. The process is a batch copolymerization of 

STY/MMA. A detailed mathematical model 

proposed by Landry (1996) has been used. The 

model is given by six 1st order ODE’s derived from 

energy, mass and component balances. Reactive 

impurities are commonly encountered in industrial 

polymerization processes. Consequently, the 

objective of the fault detection algorithm is to 

identify the impurity in ranges of values defining 

classes as follows: 

Class 1:  ppmy 1000

Class 2:  ppmyppm 300100

Class 3:  ppmyppm 500300

Class 4:  ppmyppm 700500

The impurities are detected based on two 

measurements: the temperature and the mole 

conversion after 30 minutes of operation. The 

authors of this work have theoretically shown that 

the impurity concentration is observable from these 

two measurements (Lou, 2005). The training data for 

the case without noise is shown in Figure 8. Based 

on the observations made for the examples shown in 

Section 3, the training data points were selected at 

equidistant locations from the two sides of the class 

boundaries defined above. The simulation results are 
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summarized in Table 2. The results show that the 

classification model gives better performance than 

the estimation model for both the noise free data and 

data corrupted by Gaussian noise. However, the 

difference is not as large as expected. To clarify 

further, the simulated data have been investigated in 

graphic form.  Figure 9 presents the noise-free 

testing data.  In this diagram, the impurity is plotted 

with respect to the temperature and the mole 

conversion.  Although the overall data pattern is 

obviously nonlinear, the nonlinearity is not very 

large.  

In general the observations from this more complex 

example confirms that the PPR classification model 

tends to outperform a PPR estimation model, when 

the problem is nonlinear and in the presence of 

measurement noise. It is expected based on the 

simple examples shown above, that the improvement 

of the classification model versus the estimation-

based model could be especially significant when the 

nonlinearity is more pronounced. 

Table 2. Comparison of classification and estimation 

technique in polymerization examples

Noise-free 

data

Data with 

noise

Estimation 
0.32 0.49 

Classification 
0.27 0.46

 Class 1;  Class 2;  Class 3; + Class 4

Figure 8: Original training data in the process 

measurement space, isothermal 

copolymerization example

testing data (not symbolized according to classification)

Figure 9. Noise-free Testing data, 2-dimensional 

polymerization example 

5. CONCLUSIONS 

In this work two modelling approaches for fault 

detection are compared using a PPR algorithm: a 

classification approach where the model is trained 

based on the class number versus an estimation 

based approach where the value of the process 

variable defining the fault is identified and then the 

class is identified based on that value. It was found 

that the classification approach generally 

outperforms the estimation based approach for 

nonlinear systems, when the data is sparse and in the 

presence of measurement noise. This result holds 

provided that the training data is distributed 

approximately symmetrically with respect to the 

class boundaries. Then, the PPR algorithm based on 

such data correctly locates the class boundary since it 

uses the nearest neighbourhood concept to calculate 

the output.  
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