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Abstract: The optimal approach for dynamic data reconciliation consists in using a 

complete and exact process model. Unfortunately, such a model is difficult to obtain in 

industrial practice. Through an example, several observers based on static, stationary and 

dynamic sub-models are designed and compared to the optimal approach. The 

comparisons illustrate that, for the given conditions, static observers generally lead to 

estimates that are less precise than the measurements. Stationary observers are slightly 

more precise than static observers but they obviously lack the power of temporal 

redundancy offered by dynamic models. Deterministic dynamic sub-models, that do not 

include all physical parameters (thus relatively easy to obtain), which stochastic models 

are added to, are shown to give good performances.  Copyright © 2006 IFAC 
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1. INTRODUCTION 
 
 

All actions taken to optimize or control a process 

should be based on the best estimates available for 

present and past states of the process. Sensors 

provide measurements of only some of the states and 

measurement errors are inevitably present.  

Measurement errors can be gross errors or random 

measurement noises. Only the later will be addressed 

in this paper. The objective of data reconciliation is 

to provide estimates of unmeasured states and to 

reduce the effects of measurement noise on the 

measured states. The estimates calculated by data 

reconciliation must at least satisfy reliable physical 

constraints such as the equations of mass or energy 

conservation.  

 

In industry, by far the most popular technique is 

static data reconciliation which is usually based on 

static mass conservation as first proposed by Kuehn 

and Davidson (1961). The main reason for its 

popularity is certainly that the process modeling is 

simplified by using only static mass balancing. 

Several papers have been written on this topic and 

many references can be found in review papers and 

books (Crowe, 1996; Romagnoli and Sanchez, 1999; 

Narasimhan and Jordache, 2000). The fact that 

applying static data reconciliation on a real-time 

basis to a dynamic process could be worse than using 

directly the measurements, as illustrated by Almasy 

(1990), does not seem to limit the extensive use of 

this technique in industry. Good results may indeed 

be expected with static reconciliation for time-

averaged data applications such as real-time 

optimization or metallurgical accounting. However, 

control applications require dynamic data 

reconciliation.  
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On the other hand, although the modeling part is the 

most difficult task in practice for dynamic data 

reconciliation, the assumption made by most of the 

authors is that the exact process model is known. 

Indeed, the papers are often focused on introducing 

(Liebman, et al., 1992) or comparing dynamic 

reconciliation methods (Ramamurthi, et al., 1993). 

However model mismatch could lead to severely 

biased estimates (Dochain, 2003). Because of this 

lack of observer robustness, it is probably better in 

many practical cases to use a reliable sub-model 

instead of a complete model with uncertain 

parameters. The static mass balance is the most 

popular sub-model but not appropriate for true 

dynamic applications. Fortunately, other sub-models 

such as stationary and dynamic sub-models remain 

very simple while being frequently adequate for 

dynamic reconciliation.  
 

In their paper, Darouach and Zasadzinski (1991) 

proposed the use of a generalized Kalman filter for 

performing dynamic mass balancing. This 

generalized state space representation and the 

associated filter and smoother algorithms allow using 

sub-models for dynamic data reconciliation. They 

will be extensively used in this paper.  

 

The above process observer is based on the basic 

lumped dynamic mass conservation equation, 

without any attempt to model either mixing or 

material transportation mechanisms or chemical 

reactions kinetics. Unfortunately, dynamic data 

reconciliation relying only on this equation usually 

result in poor filtering ability, and requires the 

measurement of the process inventories for 

warranting process observability. Almasy (1990) 

proposed to use the same dynamic mass conservation 

equation, while adding the dynamic empirical 

constraint that species flows behave as random 

walks. As in the paper by Darouach and Zasadzinski 

(1991), the mixing and kinetic mechanisms were not 

addressed in this paper, and the inventory was 

supposed measured. Furthermore, the problem of 

tuning the random walk variances is not discussed in 

the paper. To our knowledge, Stanley and Mah 

(1977) were the first to introduce the idea of random 

walks in data reconciliation by coupling them to 

steady-state conservation equations. A qualitative 

discussion on how to tune the random walks can be 

found in their paper.   

 

In this paper, the simulated plant is a continuously 

stirred tank reactor (CSTR) where only mass balance 

phenomena are considered. In contrast to most 

papers, the feed concentration is not supposed to be a 

deterministic manipulated variable but is defined as a 

disturbance modeled by a stationary stochastic 

process. Using the simulated plant, the study 

objective is to compare thirteen observers based on 

unbiased sub-models. The benchmark observer is 

designed from a model identical to the simulator.  

Four steady-state, four stationary and four dynamic 

observers are compared to the benchmark. The plant 

models are of varying complexity including or not 

including mixing or kinetics information; and adding 

or not adding empirical stochastic models for stream 

flow rates modelling.

 

 

2. A CONTINUOUSLY STIRRED TANK 

REACTOR (CSTR) 

 

 

A CSTR process is simulated to compare the various 

observers. Heat balance phenomena are not 

considered, however this would not impair the 

validity of the presented qualitative discussions and 

conclusions. From this simple CSTR model, several 

sub-models are extracted, leading to a variety of 

observers. 

 

The chemical reaction taking place in the CSTR is a 

first order irreversible reaction BA → . The Euler 

discretization of the differential mass balance 

equations leads to: 
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where Q is assumed to be constant and perfectly 

known input and output flowrate; V is the known 

volume of the tank; cAf, cAi and cAo are the variations 

of concentration of species A around their nominal 

value respectively in the feed flow, the tank 

inventory and the output flow; the same notation is 

used for species B which is not present in the feed 

(cBi and cBo); DA and DB are the accumulation rates 

for species A and B; K0 is the rate constant of the 

reaction. Table 1 gives the numerical values of this 

CSTR simulator. 

 

In addition to mass conservation Equations (1) and 

(2), perfect mixing is assumed:  
 

)()( kckc
AoAi

=  (3) 

  

)()( kckc
BoBi

=  (4) 

 

It is straightforward to verify that inserting (3) and 

(4) into (1) and (2) leads to usual equations for a 

CSTR. The feed concentration is defined by the 

following stationary stochastic process: 

 

Table 1. CSTR numerical values 

V 10 L  α  0.9 

Q 2 L/s  2
ξσ  0.1 

0
K  1 s

-1
  

Af
σ  13.06% 

Af
C  5 mol/L  

Ao
σ  13.32% 

Ao
C  0.833 mol/L  

Bo
σ  10.81% 

N
o
m

in
al

 

v
al

u
e 

Bo
C  4.167 mol/L    
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where ξ(k) is a zero mean Gaussian white noise of 

variance 2
ξσ  that generates variations on the five 

concentrations. Table 1 lists the standard deviations 

of these variations (
Af

σ , 
Ao

σ  and 
Bo

σ ) expressed in 

percentage of the corresponding nominal values. 

 

The five measurements are obtained by adding a 

Gaussian white noise to each concentration. The 

relative standard deviation of each independent 

measurement noise is 5% of the corresponding 

nominal value (thus defining the matrix Σ  

introduced in Section 3). 

 

Having 
Af

σ , 
Ao

σ and 
Bo

σ  larger than the 

measurement noise standard deviation contributes to 

obtaining static reconciliation estimates less precise 

than measurements, as discussed by Almasy (1990). 

This is a strong incentive for using dynamic data 

reconciliation.  

 

The objective of the paper is to compare the 

performances of thirteen observers, using always the 

same measurement information (the measured values 

of the five concentrations), while varying the 

information content in the observer model. The 

minimum information used is either the steady-state 

or the dynamic mass conservation constraints. It can 

be enriched by the information on the reaction 

kinetics and/or by the information on the mixing 

properties, and/or by empirical information on the 

stochastic behaviour of the species flows on the two 

streams. The observer performances are always 

compared to the optimal filter based on the complete 

exact model used for simulation. All the observers 

are derived using the generalized Kalman filter 

which is first succinctly described in the next section. 
 

 

3. THE GENERALIZED KALMAN FILTER 

 

 

Since all the state variables are measured in this 

work, the following generalized state space 

representation is used to design the observers:  

 

)()1()( kwkxAkxE +−=  (6) 
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where E is usually a singular matrix and  
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The covariance matrices W and Σ  respectively 

define the properties of the process noise w and the 

measurement noise v. The corresponding filtering 

and smoothing algorithms (Darouach and 

Zasadzinski, 1991) are: 
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where ˆ( / 1)x j k + is the estimate of the vector x at 

time j based on the knowledge of measurements up 

to time k+1 (j<k+1).  

 

The matrix Ω(k) is not defined as in Darouach and 

Zasadzinski (1991) since a process noise is added to 

the state Equation (6). It is defined by : 
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4. THE VARIOUS OBSERVERS 

 

 

Thirteen different observers are designed. Only the 

observer described in Section 4.1 uses the complete 

and exact information about the process. In this 

sense, it defines a benchmark for all other observers 

that rely on sub-models providing incomplete 

information about the process. The upper part of 

Table 2 summarizes the model equations used for 

each observer. 

 

The mass conservation constraint, which is the 

minimal information used in the observers is : 
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It is obtained by adding (1) and (2) and states that the 

total number of moles must be conserved. An 

important practical advantage of this equation is that 

it does not assume any mechanism for mixing and 

reaction kinetics.

 

4.1 Observer based on the complete exact process  

model  

 

The smoothing obtained by this observer (observer 1 

in Table 2) corresponds to the best possible results 

since it uses the same model as the one being used 

for process simulation, i.e. (1) to (5). The parameter 

K0 is supposed to be exactly known (which is the 

case for all observers requiring Equations (1) and 

(2)).Measurement redundancy is provided by the fact 

that the process is perfectly mixed and that the 

inventory and output concentrations are 

independently measured.  
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The generalized state space representation (6) and (7) 

for the observer model (1) to (5) is obtained with: 
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One can observe that, in this particular case, the 

matrix E is non singular. Defining matrices E, A and 

W to put the model equations in a form 

corresponding to the generalized state space 

representation will be omitted for other observers 

since the procedure is very similar.  

 

4.2   Steady-state observers 

 
The model equations used by the four static 

observers are detailed in Table 2 (observers 2.1 to 

2.4). The fundamental characteristic of all static 

observers is that accumulation rates DA and DB are 

set to zero in (1), (2) or (14). The resulting model for 

each observer can be described by:  

 

0)( =kxE  (18) 

 

i.e. A = 0 and W = 0 in (6). Since A = 0, the 

generalised Kalman filter Equations (9) to (13) does 

not provide smoothing but only filtering, due to the 

absence of temporal redundancy.  

 

Instantaneous static observers have been considered 

in this paper and thus horizon-based static observers 

are not studied.  

 

4.3 Stationary observers based on the dynamic     
conservation equation 

 

For these four observers (observers 3.1 to 3.4 in 

Table 2), the accumulation rates in Equations (1), (2) 

or (14) are considered as strongly stationary 

stochastic process instead of being set to zero as for 

static observers. The resulting models all have the 

following structure 

 

)()( kwkxE =  (19) 

 

where the covariance matrix W appears as a tuning 

parameter. The best choice for W is  

 

TEXEW =  (20) 

 

where X is the covariance matrix of the generalized 

state vector x. In practice, calculating (20) is 

impossible since only the measurements are available 

(not x). Work is underway to propose practical 

solutions to this issue. Nevertheless, for fair 

comparison purposes, W will be calculated using 

(20). As with static observers, smoothing is not 

possible, when using only instantaneous 

observations. 

 

4.4 Observers based only on the dynamic 

conservation constraint 

For setting comparisons to dynamic observers 

defined in 4.5, a dynamic data reconciliation similar 

to the one proposed by Darouach and Zasadzinski 

(1991), i.e. based only on the dynamic conservation 

Equation (14) (thus W = 0), is tested (observer 4 in 

table 2).  

  

4.5 Dynamic conservation equation with stochastic 

models for molar flows   

 

These observers are build using the deterministic 

Equation (14) combined with the following empirical 

stochastic descriptions of the molar flows:  
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The resulting model again corresponds to (6) with: 
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The parameters β, γ, W2 and W3 have to be 

determined. Three different cases have been 

considered (observers 5.1 to 5.3 in Table 2). The first 

case, inspired by the work of Almasy (1990), 

assumes random walk behaviours, i.e. β = γ =1. The 

second case assumes white noise behaviours, i.e β = γ 

= 0. For theses two cases, since the parameters β and 

γ are set, Equations (21) and (22) allow to compute 

w2 and w3 from a set of simulated data, without 

measurement noise, and therefore to tune W2 and W3. 

The third case uses an identification procedure to 

estimate β (0.90) and γ (0.94) from the true state 

signals. The identification residuals provide W2 

(0.081) and W3 (0.0076). Again, the procedure to 

obtain the parameter values is based on unavailable 

true states, but this is an appropriate procedure for 

the objective to obtain the best possible tuning for 

each observer.  

 

 

5. RESULTS AND ANALYSIS 

 

 

Since the observers are not biased, they can be 

compared by evaluating the standard deviation of the 
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relative estimation error (second part of Table 2). For 

each observer, 2500 samples were simulated. 

  

As already mentioned, it is not surprising that, for 

this combination of process and instrumentation, 

steady-state observers are in general worse than 

measurements. The exception is observer 2.2 which 

provides good estimates for four variables. This 

performance is explained by the redundancy 

provided by the inventory measurements and the 

perfect mixing constraints. When comparing 

observers 2.3 and 2.4 to observer 2.2, it can be 

concluded that in this case no gain is made by adding 

steady-state kinetic modeling even with the exact 

knowledge of parameter K0. Furthermore, all the 

static observers are unable to increase the precision 

of the feed concentration probably because its 

dynamics are too fast to be reconciled in real time 

with steady state modeling. 

 

Stationary observers produce estimates with better 

accuracy than measurements, but some variables are 

significantly less filtered than others. Stationary 

observer 3.4 which uses the most complete 

information among the stationary observers gives the 

best results. This is different from the steady-state 

observer 2.4 behaviour, because of the adequate 

tuning of the stationary accumulation rate variances. 

Nevertheless, the best performance of any stationary 

observer still remains far from the benchmark, 

mainly because only instantaneous filtering is 

possible with stationary observers. To benefit from 

temporal redundancy and to make smoothing 

possible, dynamic observers need to be introduced.  

 

The dynamic observer 4 exhibits performances 

equivalent to those of stationary observers 3.1 and 

3.3, because the information contained in the 

dynamic mass conservation constraint is equivalent 

to the statistical information on the accumulation 

rates in the stationary observers. However the 

dynamic observer 4 is worse than the best stationary 

observer 3.4 and also worse than 3.2, even if the later 

ones do not use temporal redundancy. The reason is 

related to the redundancy created by the perfect 

mixing constraints.  

 

This gives motivation for using the additional 

modeling Equations (21) and (22) which are 

empirical equations that remain to be tuned. 

Observer 5.1 is indeed doing significantly better than 

observer 4 because the random walk assumption is a 

reasonable approximation of the autocorrelated 

behaviours of the output and input signals.  Observer 

5.2 is not significantly better than observer 4, 

because the white noise assumption ignores the 

temporal correlation of the flowrates variations. 

Observer 5.3 is a little more precise than observer 

5.1. This small improvement is explained by a better 

selection of β and γ, which are slightly smaller than 

one, the value used for random walks.  

 

 

 

 

6. CONCLUSION 

    
    
Several sub-models of the same process were 

proposed to design steady-state, stationary and 

dynamic data reconciliation algorithms.  

 

Steady-state observers may produce estimation errors 

which are larger than measurement errors. This is the 

consequence of neglecting process dynamics, when 

the process variable variance due to dynamics is 

larger than the variance induced by measurement 

errors, a case that was simulated in the present study. 

Unfortunately, this is the usual industrial situation, 

thus precluding the use of such algorithms for real 

time data reconciliation, although it seems to be an 

increasingly popular approach in industry. 

 

Stationary observers, which allow mass accumulation 

rates to statistically deviate from zero, are an 

efficient alternative to steady-state observers for real 

time data reconciliation. They produce estimates that 

are more reliable than measured values, while 

requiring only a rough estimate of the accumulation 

rate variances. Although they are noticeably less 

efficient than filters based on full process models, 

they are simple to build and tune. 

 

Dynamic observers, based on the minimal dynamic 

information consisting of the mass conservation 

constraints (observer 4), are not significantly better 

than stationary observers, because of the low level of 

information redundancy. However they are better 

than steady-state observers forcing static mass 

conservation (observer 2.1).  

 

The dynamic filter can be improved by adding 

empirical information to the dynamic mass balance 

constraint, such as stochastic models of time 

evolution of flow characteristics evolution. The 

empirical models can be identified from the 

experimental data, or simply assumed to be random 

walks. 

 

The stationary or dynamic proposed observers are all 

significantly less precise than the optimal observer 

using the full phenomenological model of the process 

(observer 1). However, great care must be taken if 

considering the design of an observer based on a 

complete dynamic model, since biases may result 

from badly identified model parameters. The main 

advantage of the proposed observers is a modeling 

effort that is considerably less important. This 

advantage becomes even more important in real 

applications where several units, such as the one 

presented in this paper, are present in the plants. 

Indeed, the observers are mainly based on 

conservation equations defined by few or no 

parameters, combined with stochastic modeling that 

may be tuned from experiments.  

 

The present work was limited to linear systems in the 

Kalman filtering framework. Similar conclusions 

could probably be drawn for nonlinear dynamic data 

reconciliation based on nonlinear programming. 
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Table 2. The observers and their performances 

Benchmark Steady-state Stationary Dynamic  

1 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 4 5.1 5.2 5.3 

A, B species 

balance - 

Equations (1) 

and (2) 

X   X* X*   X** X**     

Mixing – 

Equations (3) 

and (4) 

X  X  X  X  X     

Mole 

conservation - 

Equation (14) 

 X* X*   X** X**   X X X X 

Feed 

generator – 

Equation (5) 

X          X X X 

O
b

se
rv

a
ti

o
n

 m
o

d
e
l 

Stochastic 

flows – 

Equations 

(21) and (22) 

          X X X 

A feed 2.23 5.82 6.60 5.15 5.66 4.46 4.31 3.97 4.07 4.72 3.30 4.53 3.30 

A inventory 2.63 4.99 3.54 5.19 4.56 4.96 3.52 4.17 3.14 4.91 4.90 4.85 4.90 

B inventory 0.89 5.03 3.95 5.01 5.53 5.06 3.35 4.91 3.25 2.12 1.96 2.10 1.95 

A output 2.63 5.18 3.54 4.92 4.57 4.99 3.52 5.08 3.14 5.05 4.92 4.95 4.92 

B output 0.88 5.52 3.95 6.10 5.53 4.53 3.35 4.33 3.25 4.87 2.38 4.50 2.35 

R
el

a
ti

v
e 

e
st

im
a

ti
o

n
 e

r
ro

r
 

Sum of 

relative 

variances***  

20.37 141.38 99.83 139.98 134.88 115.52 65.80 101.81 57.41 100.10 68.61 93.21 68.43 

*    Accumulation rates DA and/or DB are set to zero. 

**  Accumulation rates DA and/or DB are described by a zero mean stochastic processes. 

***The measurement relative estimation error is 5.00 % for each variable, and leads to a sum of relative variances of 125. 
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