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Abstract 

This work presents a new analytical approach for solving unsteady diffusion problems. 

In the proposed method, a formal solution is converted in closed form ones, which are 

obtaining by performing a straightforward procedure that starts with a classical split. 

The low time processing required to obtain the exact solutions allows performing online 

control of ladle furnaces. Numerical results are reported.   

1 - Introduction 

It is widely felt that the significant reduction of time 

processing due to the recent advances in numerical 

and analytical methods can make possible to proceed 

the online control based on direct simulation for some 

important applications in Engineering, such as in 

environmental problems (Zabadal, 2005), neutron 

scattering in nuclear reactors (Bogado, 2004) and 

casting of steel alloys (Zabadal, 2004). Specifically, 

for steel casting processes, the simulation of ladle 

furnaces is particularly advantageous from the 

operational point of view, because the calculated steel 

temperature agrees with experimental data even when 

nonlinear effects are ignored. The major aim of the 

online control in casting of steel alloys is to ensure 

that the temperature of the liquid steel which flows 

from the furnace does not fall out of an interval of 

roughly 10oC around a mean value about 1600oC

(which varies from one specific steel alloy to another) 

. This control prevents failures in the lattice, which 

occurs when the temperature is low, and unsuitable 

flow conditions, when the temperature is higher than a 

certain value. 

The main limitation of the use of numerical schemes 

to proceed the simulation of casting processes occurs 

for some scenarios where the ladle remains out of 

operation for long time intervals (about 24h after the 

last batch). In these cases the ladle must suffers a slow 

heating process (during about 10h), and the simulation 

becomes a very difficult task. The online control based 

on numerical simulation results unfeasible, due to the 

large time processing required. 

In this work a new analytical method for simulating 

the heating process is presented. This method, based 

on the formal solutions of partial differential 

equations, is employed to overcome the limitations of 

the methods which were originally conceived to carry 

out the online control of ladle furnaces. The most 

important features of the proposed method are the 

high processing speed and the analytical character of 

the solutions obtained.  

2 – General formulation  

The partial differential equation given by: 

0 ,Lf                        (1) 

where L is a linear operator can be decomposed as 

,Af Bf                 (2) 

in which A and B are also linear operators. Applying  

A-1 on both sides of (2) we obtain: 

1 .Af A Bf h                (3) 

In this expression hA stands for the null space of A. 

Rearranging terms it yields 

1[ ] AI A B f h                   (4) 

Solving equation (4) for f it results: 

1 1[ ] Af I A B h                (5) 

The inverse operator appearing in equation (5) can be 

written as a geometrical series: 
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Disregarding the restrictions about the norm of the 

operator A-1B, the solution is then readily obtained in 

the form: 
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0
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k

f A B h                                           (7) 

In order to obtain a particular solution for equation 

(1), it becomes necessary to choose a function 

 f0 N(A). In practice, f0 can be chosen as a function 

belonging to the intersection of the null spaces of 

(A-1B)n and A, in order to convert the series solution 

into a finite sum. In what follows it will be showed 

that the closed-form solutions achieved by means of 

the described method generate high performance 

algorithms for online control.  

3 – Application in online control of ladle furnaces 

The online control of ladle furnaces can be carried out 

by solving the heat equation in the form   

2

2

1
. ,

f f f

t r r r
                           (8)  

in a hollow cylinder, subjected to the following 

boundary conditions: 

0
r o

f

r
                (9) 

and 

( , ) t .lf l t f                     (10) 

In these equations f represents the temperature, r is the 

radial coordinate,  is the thermal diffusivity, fl is the 

temperature at r=l, and t stands for the time. This 

model describes a process in which the ladle is heated 

inside by a flame before receiving liquid steel from the 

main furnace. The first boundary condition, given by 

equation (9), states that the external wall does not 

exchanges energy with the air at room temperature 

during the process. Although the external wall being 

not really insulated, equation (9) is a reasonable 

approximation for thick walls composed of materials 

whose thermal diffusivity is low, and hence possesses 

a high thermal inertia. The second boundary condition 

informs that inner wall is at the flame temperature, 

which is time dependent. 

After the heating process, the ladle receives liquid 

steel, whose temperature is also time depending.  The 

evolution of the inner wall temperature along the time 

is fitted using a standard least square procedure 

available in MapleV. Finally, the initial condition 

imposes the final profile of the former batch to the 

next one at t=0. 

In equation (8), the operators A, B and A-1 are 

promptly identified as 

,A
t

                 (11) 

2

2

1
.B

r r r
              (12) 

and 

1 (.) ,A dt                           (13) 

whereas in the boundary condition (10) the subscript l 

refers to the coordinate r = l, where l denotes the 

thickness of the ladle wall (a typical value for l is 

about 0,35m). Once Tl is time dependent, the desired 

solution shall follow the time evolution of the 

boundary condition given by (10). 

The simpler choice of f0  N(A-1B)k  N(A) is given 

by: 

2

0f r               (14) 

Applying operator A-1B it came out 

1 4f t              (15) 

Applying the same operator over f1 it yields: 

1

1 0A Bf               (16) 

Therefore f0 = r2, which belongs simultaneously to the 

nullspaces of A and (A-1B)2, produces a closed form 

solution which contains only two terms: 

2

0 1( , ) 4 .f r t f f r t            (17) 

Analogously, another particular solution can be easily 

obtained by setting f0 = r4. In this case, the closed form 

solution is expressed as 

4 2 2 2

0 1 2( , ) 16 32 ,f r t f f f r r t t

               (18) 

and f0 = r4 belongs to the nullspaces of A and (A-1B)3.

Each even power of r, namely r2n, generates a 

closed form solution belonging to the nullspace of 

(A-1B)n+1. Other examples of solutions obtained from 

even powers of r are given below: 
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and 

10 10 8 2 6 2

0

3 4 3 4 2 4 5 5

( , ) 100 3200
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f r f r t r r t r t

r t r t t
               (21) 

     

Reminding that the desired solution shall contain some 

arbitrary parameters in order to fulfill the boundary 

condition at r = 0, as well as to follow the time 

evolution of the boundary condition at r = l, a linear 

combination of the above solutions must be employed 

in order to simulate the physical scenario. The 

boundary condition at r = 0 is automatically satisfied 

because the solution is an even function of r. Hence, 

all the numerical coefficients in the linear combination 

are specified in order to fit the boundary condition at 

r=l. This task is accomplished by means of a 

conventional curve fitting procedure.  

At this point, one may ask why use such a scheme to 

obtain closed-form solutions, once the analytical one 

is yet available in literature. The foremost reason is 

the need to expand the analytical solution in a basis set 

containing the Bessel functions J  and Y  . The 

oscillations associated with the J  functions requires a 

large number of terms in the expansion in order to 

smooth out the “wigglyness” appearing due to the 

contributions of the eigenfunctions related to the 

lowest eigenvalues. Since the definition of both Bessel 

functions involves the evaluation of the gamma 

function, which is expressed as a product, a 

summation or a high degree polynomial, a large 

number of floating point operations is demanded in 

order to produce numerical results. 

4 – Results and conclusion 

The exact solution employed to simulate the heating 

process is a linear combination given by 

5

2

0

( , )k k

k

f c p r t                 (22) 

where p2k(r,t) are the polynomials defined by 

equations (17) to (21), and the coefficients c0 to c5 are 

given in table 1. These coefficients were obtained by 

fitting the data corresponding to the boundary 

condition at r=l, as mentioned earlier. The fitting 

generates a time evolution which reproduces the 

experimental data at r=l with a mean square deviation 

about 1oC (notice that c0 was included in the linear 

combination, because a constant function is also an 

exact solution of the heat equation). 

Table 1 - Numerical values of the coefficients 

Coefficients Values

1e-7

C0 102,5 

C1 198,6 

C2 2830 

C3 8116 

C4 235,4 

C5 28,74

Figure 1 shows the corresponding time evolution of 

the temperature profile along the heating process. 

f(oC) 

360.000 s  

288.000 s 

216.000 s 

144.000 s 

72.000 s 

0 s 

Figure 1 – Time evolution of the temperature profile 

( C) during the heating process. 

The mean square deviation between the predictions 

and the experimental data available at the “Aços Finos 

Piratini” steel casting facilities is about 0,16%, and 

satisfies the requirement that the temperature of the  

steel flowing from the furnace does not fall out of an 

interval of 10oC around the mean value in 79% of the 

cases (237 batches).   

It is important to emphasize that the time required to 

obtain the temperature profiles are virtually negligible 

(less than 1s - Sempron 2.4 GHz, 512 Mb RAM, using 
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Maple V). Nevertheless, the curve fitting procedure 

must be carried out in advance. It means that, in 

practice, it becomes necessary to include a fitting 

routine in the computational code in order to proceed 

the online control. 

Another important question about the method must be 

answered. Once the proposed method was developed 

to simulate the thermal behavior of the  wall, how to 

predict the time evolution of the temperature profile at 

the bottom of the ladle? In this case there exists an 

exact solution for the corresponding Cartesian 

problem in the z coordinate, given by 

2
2 2b z+b t

0 1
b +b ef               (23) 

Notwithstanding the solution in cartesian coordinates 

were obtained directly by inspection, it is also suitable 

for real time thermal tracking.  

It is also important to remark that the solutions can be 

employed separately, which means that the thermal 

coupling between the wall and the bottom of the ladle 

furnace can be neglected without appreciable loss in 

accuracy. 

Finally, it is convenient to emphasize that all the 

functions obtained through the iterative scheme, 

namely, equations (17) to (21), are exact solutions. 

Hence, equation (22) is not a truncated series which 

constitutes an approximation to the exact solution, but  

it is itself an exact solution to the heat equation. Once 

the functions obtained are conceived to belong to the 

nullspace of a finite power n of the operator A-1B, the 

“truncated” series defined by 

1

0

k n
k

A

k

f A B h              (24) 

is always an exact solution, provided that all the terms 

beyond n are automatically dropped out. Therefore, no 

questions about convergence arises along the 

development of the proposed formulation.  
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