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Abstract:A significantresearch work hasbeen carried outon m odeling,identifica-
tion and controlofprocessesrepresented by W ienerm odels.Thesem odelsinclude
a cascadeconnection ofa lineartim e invariantsystem and a static nonlinearity.
Severalapproaches can be found in the literature to perform the identification
process.In thisarticle,we describe a param etric description forthe system ,that
allowsto describetheuncertainty asa setofparam eters.Theproposed algorithm
isillustrated through a pH neutralization process.

Keywords:W ienerM odels,ProcessControl,Uncertainty

1.INTRO DUCTIO N

Nonlinear m odel-based controlhas been widely
di used am ong the chem icalengineering com m u-
nity. The use of m odels based entirely on fun-
dam entalprocess understanding has the advan-
tage ofpossessing a clearphysicalinterpretation.
However,these m odels tend to be highly com -
plex m aking im possibletheirapplication in popu-
larm odel-based controlstrategies(Pottm ann and
Pearson,1998).

O n the other hand, purely em pirical m odels
(black-box),based entirely on input/outputdata,
lack ofphysicalinterpretation.However,they are
known to be “successful” and to have good flexi-
bility.

A third approach is used when som e physical
insightisavailable,butseveralparam etersrem ain
tobedeterm ined from observed data.In thiscate-
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gory,Pearson and Pottm ann (2000),includethree
m odel structures:the W iener m odel, the Ham -
m erstein m odeland the feedback block-oriented
m odel.These m odels are built from the com bi-
nation oftwo com ponents:a static (m em oryless)
nonlinearityN(.)and alineartim einvariant(LTI)
system H(z).

In thispaperweareinterested in W ienerm odels:
a cascade connection ofH(z) followed by the
static nonlinearityN(.).The use ofthese m odels
has been treated in literature in di erent con-
texts (Pearson and Pottm ann, 2000; Lusśon et
al.,2003;Biagiola et al.,2004).Som e represen-
tation and identification algorithm sforuncertain
W iener M odels willbe presented.The goalis to
obtain a nom inal m odel of the process plus a
param etric description ofthe uncertainty,which
is the m ain contribution of this work.For this
purpose,Laguerrepolynom ialsareused to m odel
the linear dynamic block, and a piecewise lin-
ear(PW L)representation ofthe nonlinearstatic
block isprovided.Thism odeling approach shows
to beadvantageousdueto itssim plicity,easy use
and good application results.M oreover,them odel
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Fig.1.M odelunderuncertainties

uncertainty can beeasily m apped on tothem odel
param eters.

The paper is organized as follows.In Section 2,
general concepts about m odels and uncertain-
ties are introduced.In Section 3 som e usualde-
scriptionsand identification techniquesofW iener
system s are reviewed.The proposed uncertainty
m odelispresented in Section 4 and an algorithm
for param eter uncertainty characterization is in-
troduced.In Section 5,the results are evaluated
on thebasisofasim ulation ofapH neutralization
process.Finalrem arksareaddressed in Section 6.

2.PRO CESS INFO RM ATIO N,M O DELS AND
UNCERTAINTIES

Let us consider that process data are avail-
able in the form of two sets of process in-
puts (u = {u0, u1,···, uN}) and outputs (y =
{y0, y1,···, yN}).Then,weaim atfindingam ath-
em aticalm odelwhich approxim ates these data.
Thisisperform ed in a two stepsprocedure.

In the first step,a “type m odel” is selected.W e
usethe previousknowledgeaboutthe process:

ŷk+1 = F (̂yk,···, ŷk−Ny , uk,···, uk−Nu , θ) (1)

wherethepredicted outputattim ek+ 1 depends
ofthe previousinputsand predicted outputsand
ofthe setofparam eters(θ)to be determ ined.

In the second step,the param eters (θ) are com -
puted to m inim izethedi erencebetween thepro-
cess and m odeloutputs (yk − ŷk) to any tim e.
Thisisusually perform ed by m inim izing theleast
squared error.In whatfollowswe denote thisset
ofparam etersasnominal parameters θN.

W hen the interest aims at obtaining an uncer-
tainty related with thisnom inalm odel,a typical
approach is to define a set of possible m odels
to represent allthe process behaviours.This is
perform ed by considering a setofm odelparam e-
ters such that when these param etersθ
are used, the whole set of exciting inputsu is
“m apped” onto an outputsetwhich containsthe
set ofthe output data (see Fig.1).In this way,
we assum e the sam e form at for allthe possible
m odelsin theuncertain set.Thism odelsfam ily is
defined in term sofa setofparam eters.

H z( ) N (.)
u k( ) v k( ) y k( )

Fig.2.TheW ienerm odelstructure.

3.W IENER M ODEL IDENTIFICATION

3.1 Model Description

Figure 2 depicts a W iener m odel.It consists of
a LTI system H(z) followed by a static nonlin-
earity N(.).Thatis,the linearm odelH(z)m aps
the input sequence{u(k)} into the interm ediate
sequence {v(k)},and the overallm odeloutputis
y(k)= N(v(k)).In the following,there isno loss
of generality in assum ingH(1) = 1,since that
any othervalueofthisgain can beincluded in the
nonlinearblock (Pearson and Pottm ann,2000).

O ne of the m ost com m on choices for the rep-
resentation of the linear block are the Ratio-
nal Transfer Functions (Pearson and Pottm ann,
2000;Figueroa et al.,2004).Another usualop-
tion aretheLinear State Space Models (Lusśon et
al.,2003).A drawback ofthesem odelsisthatwe
need a large num berofparam etersto describe a
system with a slow im pulseresponseora dam ped
system .Alternative representations,where prior
knowledgeaboutthedom inantpolescan beused,
aretheLaguerre and Kautz Models.Forexam ple,
theLaguerrem odeldescribesthetransferfunction
H(z)with thefollowing basisfunction expansion,

H(z)=
NL∑
i=0

hiLi(z, a) (2)

Li(z, a)=
1− a2

z − a

(
1− az

z − a

)i−1

(3)

wherethe param etersofthem odelarethecoe -
cientshi and a isa filtercoe cientchosen a
priori.The nonlinearblock N(.) is,in general,a
real-valuefunction ofone variable,i.e.y = N(v).
W e describethe nonlinearfunction as

y =
Nn∑
i=0

f̃iB̃i(v) (4)

where the basisfunctions̃Bi(v)havebeen prede-
term ined,the values̃fi are the param eters that
should becom puted andNn willbereferred to as
“order” ofthe nonlinearity.O nce the basis func-
tions B̃i are fixed,the outputisa linearfunction
ofthe param eters.Thisallowsusto use a linear
regression to estim ate the param eters.The two
basicadvantagesofthisapproacharethelow com -
plexity and the uniquenessofthe solution.Som e
possiblechoicesforthe basisfunctionsarePower
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Series, Chebyshev Polynomials, Sigmoid Neural
Networks orPiecewise Linear Function (PW L).In
particular,the PW L functionshave proved to be
a very powerfultoolin them odeling and analysis
ofnonlinearsystem s.The generalform ulation of
PW L functionsallowsustorepresentanon-linear
system through a setoflinearexpressions,each of
them valid in a certain operation region.To m ake
this approxim ation,the dom ain ofvariables is
partitioned into a setofσ non-em pty regions i,
such that =

⋃σ
i=1

i.In each oftheseregionsthe
non-linearfunction isapproxim ated usinga linear
(a ne) representation. These functions allow a
system aticand accuratetreatm entoftheapprox-
im ating functions. It can be proved (Juli´an et
al.,1999)thatany nonlinearcontinuousfunction
N(v) : m 1 can be uniquely represented
using PW L functionsin the form ofEq.(4)as:

B̃i(v)= (v, βi) (5)

where βi are given param eters that define the
partition ofthe dom ain ofv,and arefunctions
thatinvolvenested absolutevalues.In thispaper
weusean orthonorm aldescription ofthebasisdue
to itslocalproperties.

3.2 Nominal Model Identification

Di erent m ethods for W iener m odels identifica-
tion havebeen reported,and they can begrouped
in threem ain approaches.Thefirstoneisan itera-
tivealgorithm forHam m erstein m odelsidentifica-
tion (Narendraand G allm an,1966).Ifthesystem
is adequately param eterized,then the prediction
error can be linearly separated into each set of
param eters(the those ofthe linearand the non-
linear blocks).The estim ation is then perform ed
by minimizing alternatively,with respectto each
setofparam eters.

A second approach, based on correlation tech-
niques (Billings and Fakhouri,1978),relies on a
separation principle,but with the rather restric-
tiverequirem enton the inputto be white noise.

A recentapproach forthe identification ofblock-
oriented m odelsisbased on leastsquaresestim a-
tion and singularvaluedecom position (Bai,1998).
Due to theparticularparam eterization used,this
m ethod appliesonlyforsingleinput/singleoutput
system s.G ´om ezand Baeyens(2004)perform ed a
m ore generalparam eterization to dealwith m ul-
tiple input/ m ultiple output (M IM O ) system s.
Thisapproach willbeherein followed fornom inal
m odelidentification.

Let us assum e that an input-output data set is
available, noted as uk and yk, respectively. To
obtain these data sets, several aspects should
be taken into account.For exam ple,the process

should bepersistentlyexcited in thewholedom ain
ofthe nonlinearblock,such thatallthe relevant
dynam icsiscaptured.

From Fig.2,the signalvk can be written as

vk = H(z)•uk, aswellasvk = N−1(yk)(6)

Equating both sidesofthese equations(with the
inclusion of an error functionε(k) to allow for
m odelingerror)thefollowingequation isobtained

Nn∑
i=0

fiBi(yk)= h0l0(uk)+
Nl∑
i=1

hili(uk)+ ε(k) (7)

or,equivalently,

ε(k)=
Nn∑
i=0

fiBi(yk)− h0l0(uk)−
Nl∑
i=1

hili(uk) (8)

which isa linearregression.Defining

θ = [f0, f1,···, fNn , h1, h2,···, hNl
]T (9)

φ = [B0(yk), B1(yk),···, BNn(yk),

− l1(uk),− l2(uk),···,− lNl
(uk)]

T , (10)

Then,Eq.(8)can be written as

ε(k)= θT φ − l0(uk) (11)

Now, an estim ate θ̂ of θ can be com puted by
m inim izingaquadraticcriterion on theprediction
errors ε(k) (i.e.the least squares estim ate).It is
wellknown thatthisestim ate isgiven by:

θ̂ =
(

N
T
N

)−1
N (12)

where = [− l0(u1),···,− l0(uN)]
T and =

[φ(1),···, φ(N)]are form ed using the set ofthe
N data availablefrom the process.

Now,estim atesoftheparam etersf̂i (i = 0,···, Nn),
ĥ0 = 1 and ĥi (i = 1,···, Nl) can be com puted
by partitioning the estim ate θ̂,according to the
definition ofθ in (9).It is im portant to rem ark
thatwe are identifying the inverse ofthe nonlin-
earity,which is frequently used in m any control
applications.

4.UNCERTAINTY CHARACTERIZATION

In this section we develop an algorithm , based
on the ideas of Section 2, to characterize the
uncertaintiesofthe m odelobtained in Section 3.
W eintroducea setofparametersH forthelinear
dynam ic block and a setF forthe param etersof
the inverseofthe nonlinearblock:
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Fig.3.Uncertainty setsin W ienerM odel

H =
{

h : h = ĥ + δh, hl
i ≤ δh

i ≤ hu
i 1 ≤ i ≤ Nl

}
(13)

F =
{

f : f = f̂ + δf , f l
i ≤ δf

i ≤ fu
i 1 ≤ i ≤ Nn

}
(14)

To define these bounds,let us define som e sets.
G iven the input data uk, the linear uncertain
system defined byH m aps atsom e specific tim e
k overa set

Vu =

{
v :v =

Nl∑
i=0

hili(uk), h H

}
(15)

G iven an inputuk,the Laguerre term oforderi,
li(uk) is a realnum ber and the set Vu takes the
form ofVu = {v :vl v vu}.

O n the other hand,ifwe consider the uncertain
description oftheparam etersin F ,agiven output
yk m apsatsom especific tim ek overa set

Vy =

{
v :v =

Nn∑
i=0

fiBi(yk), f F

}
(16)

This situation is showed in Fig. 3. From this
picture it is clear that the param eters set will
describe the uncertainties description ofSection
2 ifVy Vu = .In this way,the pointuk is
m apped onto Vu through H . Then, sinceVy

Vu = ,thispointwillbe m apped in yk through
the inverse ofF . Then,it is only necessary to
com pute the param eters bounds to satisfy this
condition.The nom inallinear m odelparam eters
ĥi can bewritten asa vector,by considering that
theLaguerrebasisli(uk)areasetofrealnum bers
for each inputuk.Let l(uk) be the vectorwhich
ith entry is the Laguerre basisli(uk).Then,the
expression ofthe linearm odelis

v̂(k)= ĥT l(uk). (17)

In a sim ilarway,the PW L basisBi(yk)are a set
ofpositiverealnum bersforeach outputyk.B(yk)
is the vector whose ith entry is the PW L basis
Bi(yk).Then,the linearm odelexpression is:

v(k)= f̂T B(yk). (18)

In thefollowing,letusanalyzetheboundson the
param eters.

4.1 Uncertainty concentrated in the linear block

In this case,let us assum e that the uncertainty
is concentrate in the linear block.Then,we are
looking for the uncertain m odel that m aps the
set ofdata u to the set v = f̂T B(y).To define
an uncertain m odelthat allows to describe the
com plete setofdata,we should com pute the set{
h :h = ĥ + δh, hl

i δh
i hu

i

}
. Now,since that

the entries ofl(uk) could be positive or nega-
tive, it is possible to split the vectorl(uk) by
defining l+(uk) = max(l(uk),0) and l−(uk) =
min(l(uk),0). Then, form ing the vector γ =[
− (l−(uk))T ,(l+(uk))T

]T
, we can com pute the

uncertaintiesboundsas

m in
hl,hu

Nl∑
i=1

(
hl

i + hu
i

)
(19)

s.t.[
(hl)T ,(hu)T

]
γ e(k), ife(k) 0;k = 1,···, N

−
[
(hl)T ,(hu)T

]
γ e(k), ife(k) 0;k = 1,···, N

hl
i, h

u
i 0

where e(k)= ĉT B(yk)− ĥT l(uk) (20)

4.2 Uncertainty concentrated in the nonlinear
block

In this case,let us assum e that the uncertainty
isconcentrated in the nonlinearstationary block.
Then,wearelookingfortheuncertain m odelthat
m aps the set ofdata y to the set v = ĥT l(u).
Then,to define an uncertain m odelthat allows
to describe the com plete set ofdata,we should

com pute the set
{
f :f = f̂ + δf , f l

i δf
i fu

i

}
.

Now,since thatthe entriesofB(yk)arepositive,
wecan com putetheupperbound uncertaintiesas

m in
fu

Nn∑
i=1

fu
i (21)

s.t. (fu)T B(yk) e(k), k = 1,···, N

fu
i 0

and the lowerbound as

m in
f l

∑
i

f l
i (22)

s.t. − (f l)T B(yk) e(k), k = 1,···, N

f l
i 0

4.3 Uncertainty in both the linear and nonlinear
blocks

In this case,we consider the m ost generalcase,
whereuncertainty ispresentin both m odels.Note
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that the intersection ofthe uncertainties in the
linearand nonlinearm odelsshould benon em pty.
Thiscan be solved as:

m in
hl,hu,f l,fu

∑
i

(
hl

i + hu
i + f l

i + fu
i

)
s.t.

[
− (hl)T ,− (hu)T ,(fu)T

] [
γ

B(yk)

]
e(k),

ife(k) 0;k = 1,···, N[
− (hl)T ,− (hu)T ,(f l)T

] [
γ

B(yk)

]
e(k),

ife(k) 0;k = 1,···, N

5.PRO CESS DESCRIPTIO N

To illustrate the identification procedure,sim ula-
tion resultswere obtained.The exam ple consists
of the neutralization reaction between a strong
acid (HA) and a strong base (BOH) in the
presence ofa bu er agent (BX) (G aĺan,2000).
The neutralization takes place in a CSTR with
a constant volum e V .An acidic solution with a
tim e-varying flow qA(t) of com positionx1i(t) is
neutralized using an alkaline solution with flow
qB(t)ofknown com position m ade up ofbasex2i

and bu eragentx3i.Forthisspecificcase,under
som e assum ptions,the dynam ic behavior ofthe
process can be described considering the state
variables:x1 = [A−],x2 = [B+]and x3 = [X−].
Then,the m athem aticalm odelofthe processis:

ẋ1 = qA/V x1i − (qA + qB)/V x1 (23)

ẋ2 = qB/V x2i − (qA + qB)/V x2 (24)

ẋ3 = qB/V x3i − (qA + qB)/V x3 (25)

F(x, ξ) ξ + x2 + x3 − x1 − Kw/ξ

− x3/[1+ (Kx ξ/Kw)]= 0 (26)

where ξ = 10−pH.The param etersofthe system
are addressed in Table 1.Using this m odela set

Table1.Neutralization Param eters

Parameter Value

x1i 0.0012 mol HCL/l
x2i 0.0020 mol NaOH/l
x3i 0.0025 mol NaHCO3/l
Kx 10−7 mol/l
Kw 10−14 mol2/l2

qA 1 l/m
V 2.5 l

ofdata is generated by sim ulating 2000 sam ples
with a sam ple tim e Ts = 0.5.A random signal
uniform ly distributed in [0,1] is applied to the
m anipulated variableqB,thisinputchangeseach
five sam ples.A random gaussian noise with zero
m edia and variance0.5 isadded to the m easured
pH.Beforeproceeding with theidentification,the
steady valuesare rem oved from input(qB = 0.5)
and output(pH = 7.7182),respectively.
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Time (samples)

v(
k)

 v=H(u)
 v=N−1(y)

Fig.4.Sim ulation forthe nom inalW ienerm odel

In a first step, we com pute a nom inal W iener
M odelasdescribed in Section 3.W econsiderthree
Laguerre polynom ials(i.e.Nl = 3)with a = 0.7
to representthe linearm odeland a PW L with 8
sectionspartition to describe the nonlinearstatic
gain.The identification is perform ed using a set
of1000 data,and therem aining data areused for
validation.Figure 4 shows a set ofthese results,
restricted to 400 sam ples (halffor identification
and halffor validation).Two curves are shown:
the signalv(k) as the output ofthe linear block
and asthe outputofthe inverse ofthe nonlinear
block N−1(y(k)).The param etersare:

hT =
[
1 − 0.2022 0.1386

]
fT = [− 0.660 − 0.445 − 0.416 − 0.389 − 0.374

− 0.303 − 0.0420.1320.2040.2190.557]

for the linear and the nonlinear blocks,respec-
tively.

In a second step,we assume the uncertainty is
concentrated in the linear block.By solving the
problem described in Section 4.1,the uncertainty
(seeFig.5)in the param etersisdescribed by:

hu =
[
0.5320 0.120 0.315

]
hl =

[
0.427 0.174 0.319

]
The case with uncertain nonlinear param etersis
now considered.Solving the problem ofSection
4.2,the param eterbounds(seeFig.6)are:

fu = [0.000 0.083 0.060 0.074 0.056 0.135

0.293 0.355 0.216 0.478 0.053 ]T

f l = [0.000 0.137 0.260 0.000 0.273 0.304

0.404 0.054 0.295 0.206 0.079]T

Finally,letusconsiderthe case with uncertainty
in both blocks.Solvingtheproblem ofSection 4.3,
the param eterbounds(seeFig.7)are:

fu = [0.029 0.156 0.082 0.131 0.124 0.147
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Fig.5.Uncertainty in linearparam eters
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Fig.6.Uncertainty in nonlinearparam eters
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Fig.7.Uncertainty in linearand nonlinearparam -
eters

0.312 0.341 0.215 0.479 0.053]T

f l = [0.000 0.000 0.174 0.000 0.133 0.231

0.342 0.055 0.267 0.163 0.106]T

hu =
[
0.000 0.000 0.046

]
hl =

[
0.0833 0.000 0.000

]

6.CO NCLUSIO NS

In thisarticle,identification and robustnessanal-
ysis ofW iener system s are considered.Di erent
representations had been com pared in term s of

robustm odelingcapabilities.PW L functionswere
used torepresentthenonlineargain,with benefits
dueto itsgood approxim ation level.Thesim ulta-
neousidentification approach herein used showed
a slightadvantage in term sofapproxim ation er-
rors.These errorsexhibita lineardependence on
the m odel param eters,which reduces the com -
plexity ofthe identification form ulation.
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