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Abstract: A new method for the spatial discretization of complex multi-scale
systems described by partial differential equations is presented. This method allows
to preserve the global power balance equation and the geometric structure of the
system. The modelling of the adsorption column is based on a network approach.
The key notions are the energy function and the description of the power transfers
within the system and through its boundaries with the help of a power-conserving
geometric structure. The proposed discretization method preserves this geometric
structure and is thermodynamically consistent.
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1. INTRODUCTION

An adsorption column is a complex system which
may be mathematically described by multi-scale
partial differential balance equations. It may also
be modelled using a network approach. This ap-
proach, which is an extension of the infinite di-
mensional port based modelling approach, con-
sists in splitting each phenomena into atomic ele-
ments with particular energetic behaviors. Then,
these atomic elements are connected via an in-
terconnection structure which characterizes en-
ergy exchanges within the system and through
its boundaries. This kind of modelling presents
many advantages compared to the classical PDEs
approach. First of all, each atomic element is well
characterized from an energetic point of view. The
interconnection between these atomic elements is
done using power conjugated variables, named the
port variables. The use of these port variables
makes the interconnection between elements from

different physical domains consistent. As a conse-
quence, the second advantage of such modelling
is the modularity that it offers. Submodels and
laws can be changed without taking into account
problems linked to the interconnection : causality,
consistency of the port variables etc ... Finally
the third advantage that particularly interests us
and that is the center of interest of this paper
is the discretization method that derives directly
from this formalism. This spatial discretization
method preserves the energetic behavior of each
subsystems, the geometry of the energy flows and
the global power balance.

The main phenomena that occurs within the
column (diffusion, mixing and convection) can
be represented using a conservative part, a dis-
sipative part and an interconnection structure
named ”Dirac structure” which is also used in
the Port Hamiltonian Systems definition (Golo
et al., 2004; Maschke and Schaft, 2001; Schaft
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and Maschke, 2002). This representation is related
respectively to energy conservation, passivity and
instantaneous power conservation. These underly-
ing properties are fundamental in control theory
since they may be used for stability analysis or
control purposes.

Finite dimensional approximation is a fundamen-
tal concern for the control of distributed param-
eters complex systems. One of the difficulties is
to develop a reduction method which preserves
some interesting qualitative features of the origi-
nal model (such as stability, passivity, etc.). In this
paper, we present a method of spatial discretiza-
tion for an adsorption column model. One of the
interests of this method is that the Dirac structure
is preserved as well as the associated global power
balance equation.

In section 2, we briefly recall some basic features
of port-based modelling. In section 3 we intro-
duce the adsorption model and give its associ-
ated multi-scale geometric model. The section 4 is
devoted to the presentation of the discretization
method. The section 5 presents some simulation
results issued from this discretization scheme.

2. PORT BASED MODELLING FOR
DISTRIBUTED SYSTEMS

In this section we recall the main differences be-
tween the classical and the port based modelling
approaches. The port based modelling is using
a network type language. This kind of approach
takes place within an unified approach for the
energetic modelling of complex multidomain sys-
tems. Let us restrict the presentation to matter
conservation. In this case, the general mass bal-
ance equations for species i in a 3-dimensional
spatial domain V issued from the conservation
laws take the familiar form:

∫
V

∂qi

∂t
= −

∫
V

div(Ni) ,∀i ∈ {1, · · ·nc} (1)

where nc denotes the number of components, qi

the molar density or concentration, Ni the molar
flux of the specie i going through the boundary
∂V of the domain V . A distributed source term fi

may appear in the balance equation but is omitted
here as it is not useful to outline the instantaneous
power preserving interconnection structure. Let
denote d the exterior derivative of a differential
form and note that the previous mass balance
equation can be written in the local form :

∂qi

∂t
= −dNi , ∀i ∈ {1, · · ·nc} (2)

The port based modelling defines the network
variables according to the Gibbs equation. Let g

denotes the Gibbs free energy density. We assume
that this specific energy depends on the molar
concentration vector,i.e g = g(q). The time varia-
tion of the total Gibbs free energy can be written
(δcg denotes the variational derivative of g) :

∂

∂t

∫
V

g =
∫

V

(δcg)T ∧ q̇ (3)

Using the mass balance equation (2) the global
Gibbs equation becomes :

∂

∂t

∫
V

g = −
∫

V

(δcg)T ∧ dN (4)

and after integration by parts of the right hand
term :

∫
V

(δcg)T∧dN+
∫

V

d
(
(δcg)T

)∧N =
∫

∂V

(δcg)T∧N

(5)

The network variables are then defined as the
pairs (δcg, dN) and (d(δcg), N). The variables
δcg = µi = e1 and d(δcg) = dµ = e2 are called
the effort variables and the variables dN = Φ1

and N = Φ2 are called the flow variables. The
pair of effort and flow variables is called power
conjugated variables as their product has the unit
of a power. Consequently, the equation (5) links
the power within the spatial domain and the
power flux at the boundary. With these notations
the interconnection structure can be written(

Φ1

e2

)
=

(
d 0
0 d

) (
Φ2

e1

)
(6)

In addition to the equation (6) we define the
boundary variables by :

Φ∂ = −Φ2|∂V , e∂ = e1|∂V (7)

Using these notations, we can state that ((e1, e2),
(Φ1, Φ2), e∂ ,Φ∂) defines a Dirac structure (See
(Schaft and Maschke, 2002), (Maschke and Schaft,
2001) for details).

3. THE PORT BASED MODEL OF AN
ADSORPTION COLUMN

Adsorption processes are multi-scale processes. If
a zeolite is used as adsorbent medium, the mass
transfer phenomena description may be decom-
posed at three different scales namely the extra-
granular, macroporous and microporous scales
(see Fig. 1).

In this section we present the port-based model of
the microporous scale and the coupling with the
macroporous scale. The two other scales models
are similar and not detailed in this paper. Fur-
thermore all the considered models are isothermal
and we assume that only one of the components
is diffusing at the microporous scale.
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Fig. 1. Adsorption column

In the context of a three-dimensional spatial do-
main, we distinguish between zero-forms (func-
tions), one-forms, two-forms and three-forms. Ba-
sically functions such as µi can be evaluated at
any point of the spatial domain, one-forms can be
integrated over every 1-dimensional curve, two-
forms such as molar flux Ni (of species i) can be
integrated over every 2-dimensional surface and
three-forms such as concentrations qi can be inte-
grated on every sub-volume of the spatial domain.

In the following we consider a spherical symmetry
in spherical coordinates (r, θ, φ). Consequently :

• the molar flux may be reduced to the 0-form
(on a 1D domain) φmic

i2 such that φmic
i2 =

4πr2Nmic
i ,

• the chemical potential of species i, the 0-form
µmic

i becomes the 0-form denoted by emic
i1 ,

• the concentration of species i, the 3-form qi

becomes the 1-form denoted by qL
i = 4πr2qi.

Let now consider the figure Fig. 2 and first the
left hand part of the picture relative to the con-
servation phenomenon.

Stokes 
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Fig. 2. Energy based model of the microporous
scale

The conserved variable is the linear concentration
of species i, the 1-form qL

i , which obeys the
conservation equation:

∂qL
i

∂t
= −divφmic

i2 = −φmic
i1 (8)

The closure equation representing the thermo-
dynamical equilibrium in the adsorbed scale is
derived from a Langmuir‘s model such as (∗ de-
notes the Hodge star product which, in the one-

dimensional case, transforms 0-forms into 1-forms
and conversely) :

emic
i1 = µ0

i (T, P0) + RT ln
(

1
P0k

∗qL
i

(∗qL
s − ∗qL

i )

)
(9)

Let now consider the right hand part of the pic-
ture of Fig. 2 that represents the diffusive phe-
nomenon. Maxwell-Stefan law is used for repre-
senting the diffusion in the microporous scale. The
only considered friction is the one exerted by the
solid on species i. In this case, the Maxwell-Stefan
law becomes:

φmic
i2 = −Dmic ∗ qL

i

RT

∂emic
i1

∂r
= −Dmic ∗ qL

i

RT
∗ emic

i2

(10)

Equations (10) and (8) make appear the inter-
connection structure depicted in the center of the
figure Fig. 2 and defined by :

⎧⎪⎨
⎪⎩

φmic
i1 =

∂φmic
i2

∂r

emic
i2 =

∂emic
i1

∂r
,

(11)

We also define some port variables as :

φB = −φmic
i2|∂ , eB = emic

i1|∂ (12)

The flow variables (φmic
i1 , φmic

i2 ) and the effort
variables (emic

i1 , emic
i2 ) are respectively the ex-

tensive and intensive variables. (φmic
i1 , emic

i1 ) and
(φmic

i2 , emic
i2 ) are two couple of power conjugated

variables. This interconnection structure is power
preserving and makes the link between the en-
ergy within the spatial domain and the boundary
power flows. In the case of crystal, the power flux
at the boundaries is composed with power flux in
the center of the crystal and power exchanges with
the macroporous medium.

The coupling between microporous and macrop-
orous scales is done using two kinds of variables,
the intensive and extensive variables. The cou-
pling relation between the intensive variables is
derived from the assumption of local equilibrium
at the interphase between the two scales. This
leads to:

µmic
i (x, z)|z∈∂V mic = µmac

i (x)1∂V mic(x)(z) (13)

where 1∂V mic(x)(z) denotes the function taking
the value 1 if z ∈ ∂V mic(x), 0 else. Another cou-
pling relation is defined on the conjugated exten-
sive variables, the volumetric density flux variable
at the macroporous scale fmac

i (x) and the flux
variable of microporous scale Nmic

i (x, z)|z∈∂V mic

restricted to the boundary of its domain. This
coupling relation between the extensive variables
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is the volumetric mass balance equation which ex-
presses the continuity of molar flux at the bound-
ary of the two scales at the point x ∈ V mac :

fmac
i (x)+

(∫
∂V mic(x)

Nmic
i (x, z)dS(z)

)
.ρp(x) = 0

(14)
with ρp(x) the volumetric density of crystals in
the pellet.

4. DISCRETIZATION

We shall follow the discretization procedure based
on a mixed finite element method and adapted to
Port Hamiltonian systems in (Golo et al., 2004).
The purpose is to preserve the energetic behavior
of each basic element of the figure Fig. 2. For that
purpose, we propose appropriated interpolation
functions for both effort and flow variables.

4.1 Approximation of flows and efforts

In the sequel we shall derive a discretized power
conserving structure for a finite element defined
on some radial interval R = [a, b] ⊂ Z = [0, Rmic].
Hence the port variables of such a finite element
are:

ea
∂(t) = e1(t, a) eb

∂(t) = e1(t, b)
φa

∂(t) = −φ2(t, a) φb
∂(t) = −φ2(t, b)

(15)

The exchange of power between the element and
its environment takes place in the port at the
spatial boundary of the element.

The variables defined around the power conserv-
ing structure are the 1-forms φ1 and e2, and the
0-forms φ2 and e1. Let us define the following
approximation of the one-forms φ1 and e2 :

{
φ1(t, r) = φab

1 (t)ωab
1 (r)

e2(t, r) = eab
2 (t)ωab

2 (r)
(16)

where ωab
1 (r) and ωab

2 (r) are one-forms satisfying:

∫ b

a

ωab
i = 1 for i = 1, 2 (17)

The 0-forms φ2 and e1 are approximated by:

{
e1(t, r) = ea

1(t)ωa
1 (r) + eb

1(t)ω
b
1(r)

φ2(t, r) = φa
2(t)ωa

2 (r) + φb
2(t)ω

b
2(r)

(18)

where the 0-forms satisfy :

ωa
i (a) = 1, ωa

i (b) = 0,

ωb
i (a) = 0, ωb

i (b) = 1, for i = 1, 2
(19)

in order to satisfy to the boundary conditions (15).

4.2 The discretization of the power conserving
structure

In the following, we propose to discretize the
power conserving structure depicted at the cen-
ter of the figure Fig.2. Let us first recall the
constitutive relation of the conservative structure
defined in (11) and associated with the exterior
derivative :

{
φ1 = dφ2

e2 = de1

{
e|∂ = e1|∂R
φ|∂ = −φ2|∂R (20)

The approximations of equalities in (20) gives:

φ1 = dφ2 e2 = de1 (21)

e|∂ = e1|∂R φ|∂ = −φ2|∂R (22)
Now let us introduce the approximation formulas
(16) and (18) in (21) and integrate along the
interval [a, b] the resulting equations. Thank to
(17) and (19) the following equations summarizing
the discretized interconnection are obtained:⎡

⎢⎢⎢⎢⎢⎢⎣

ea
∂

eb
∂

φa
∂

φb
∂

φab
1

eab
2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1
0 0 −1 1
−1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

ea
1

eb
1

φa
2

φb
2

⎤
⎥⎥⎦ (23)

Moreover it implies some choice for the forms of
the approximations:

dωa
2 (r) = −ωab

1 (r) dωb
2(r) = ωab

1 (r)

dωa
1 (r) = −ωab

2 (r) dωb
1(r) = ωab

2 (r)
(24)

In order to insure the power conservation of the
structure we have to define the internal approxi-
mation variables φab

2 (t) and eab
1 (t) such that the

approximated power relation be expressed in the
following way:

Pab(t) =
∫

ab

φab
1 (t)eab

1 (t)+∫
ab

φab
2 (t)eab

2 (t) + [e∂(b)φ∂(b) − e∂(a)φ∂(a)]

(25)

After computation, the approximated power is
given by:

P ab(t) =
(
e1(b)φ2(b) − e1(a)φ2(a)

)
+[

e∂(b)φ∂(b) − e∂(a)φ∂(a)
] (26)

With relations given in (25) and (26), it appears
that a general choice for the internal variables can
be proposed :

eab
1 = αabe

a
1 + βabe

b
1 φab

2 = γabφ
a
2 + δabφ

b
2 (27)

Taking into account the two last relations of (23),
it appears that αab +βab = 1, γab = βab and δab =
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αab . In order to obtain a balanced discretization,
we will choose for simulation results αab = 1

2 .

The elimination of ea
1 , eb

1, φa
2 and φb

2 thank to
(23) and (27), the use of (22) and the fact that
βab = 1 − αab permits to write :⎡
⎣ e

a
1

e
b
1

φ
a
2

φ
b
2

⎤
⎦ =

[
0 αab − 1 1 0
0 αab 1 0

−αab 0 0 1
1 − αab 0 0 1

]⎡
⎣ φ

ab
1

e
ab
2

e
ab
1

φ
ab
2

⎤
⎦ ,

⎡
⎣ e

a
∂

e
b
∂

−φ
a
∂

−φ
b
∂

⎤
⎦ =

⎡
⎣ e

a
1

e
b
1

φ
a
2

φ
b
2

⎤
⎦

(28)

One can show that the previous approximation
of the initial power conserving structure remains
power conserving. This discretized power conserv-
ing structure gives the expression of the boundary
variables in function of the discretized internal
port variables.

4.3 The discretization of thermodynamical properties

We focus our attention on the right hand side
of the figure Fig. 2 relative to the dissipation.
Since the linear concentration qL belongs to the
same space as the flow φ1 (a 1-form on the spatial
domain), its approximation has to be chosen as :

qL(t, r) = −Ψab
1 (t)ωab

1 (r) = nab(t)ωab
1 (r) (29)

with
dΨab

1 (t)
dt

= φab
1 (t) = −ṅab(t) (30)

The energy on the element [a,b] is defined as :
HC =

∫ t

0

(∫
ab

q̇L(t, r)µ(t, r)
)
dt. Equation (9)

gives the thermodynamical law in the adsorbed
scale.

Using the approximation and integrating along
the interval [a, b], the approximated energy on the
considered volume of micropore is given by :

HC =

∫ t

0

ṅ
ab

(t)

(
µ
0
(T, P0) + RT ln

(
nab(t)

P0 k (nab
s − nab(t))

))
dt

Taking into account the expression of the ap-
proximated effort eC(t, r), which is a 0-form, one
obtains the following constitutive relation for the
chemical potential internal variable :

eab
1 = µ0(T, P0) + RT ln

(
nab(t)

P0 k (nab
s − nab(t))

)

Finally we obtain a relation for HC which is
consistent with the fundamental relations of the
thermodynamics :

eab
1 =

∂HC

∂nab
. (31)

4.4 The discretization of the diffusion equations

The discretized constitutive relation defining the
flux due to diffusion may be obtained in an analo-
gous way. Consider the power associated with the
diffusion in the microporous medium :

PR =
∫

ab

eRφR

and compute its expression in the discretized
variables :

PR =
∫

ab

eRφR = −KabD

RT
nab(t)

(
eab
2 (t)

)2

with Kab =
∫

ab
∗ωab

1 (r) ∗ ωab
2 (r)ωab

2 (r). qL(t, r)
having been approximated by qL(t, r) = nab(t)ωab

1 (r)
one can deduce, by identification of the power
variables, the discretized flux φab

2 :

φab
2 =

∂PR

∂eab
2

= −Rabe
ab
2 (t) (32)

with Rab(nab) = 2KabD
RT nab .

5. SIMULATION RESULTS

In order to satisfy the condition (17), the one-
forms ωab

i are defined by ωab
i = dz

b−a . The zero-
forms ωa

i and ωb
i are defined such that Eq. (15) is

satisfied. So we have ωa
i = b−r

b−a , ωb
i = r−a

b−a . The
spatial domains (all the scales are considered for
simulation) are discretized in equal meshes in each
scale (10 meshes for each scale). The discretized
model is simulated with the physical parameters
presented in (Jolimaitre, 1999).

This simulation is performed for a separation of
mixture of two constituents, O2 and N2. The sim-
ulated experiment is the response of an adsorption
column, initially saturated in N2 to a steam of
air. The process is initially at equilibrium which
corresponds to µ = 0 all along the profile (in each
point in the simulated column).

In Fig. 3-a, the output of the column is initially
saturated with N2 is shown. In Fig. 3-b, the
concentration of the first constituent at the first,
sixth and last mesh of the extragranular phase
is represented. In Fig.3-c, the concentrations in
the macroporous medium attached to the last
discretized mesh of the column is given. The
curves correspond to the first, the sixth and the
last mesh. In Fig.3-d, the concentration in the
microporous medium attached at boundaries of
the pellet (the last mesh) which is itself attached
in the last mesh of the column.
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Fig. 3. Simulation results

6. CONCLUSION

In this paper we discussed the port-based mod-
elling and spatial discretization of distributed pa-
rameter systems. In order to illustrate this ap-
proach, a model of adsorption column has been
derived directly from its thermodynamical de-
scription. The modelling methodology presented
exhibits some interesting features :

• The modelling is coordinate free.
• The model is a network model where each ele-

ment represents a specific phenomenon which
may be identified from a thermodynamics
point of view.

• The instantaneous power conservation and
the description of the power transfers within
the system and through its boundaries are
explicitely represented.

These properties of the model have several impor-
tant consequences :

• The derived model requires parameters that
have a clear physical meaning. This consid-
erably simplifies the parameters estimation
task.

• The model is acausal, hence postpones the
choice of boundary conditions (for instance
depending here on the model of the gaseous
phase in the adsorption column) and is thus
clearly reusable.

• The central geometric Dirac structure is a
direct generalization of Poisson structure in
Hamiltonian systems. It suggests and allows
the use of passivity-based or energy-shaping
techniques for control purposes.

These considerations strongly encourage the de-
velopment of a discretization method which pre-

serves both the nature of the interconnection
structures and the physical properties of the con-
nected elements. Such a method has been pre-
sented in this paper. Its numerical effectiveness
has been established. But the key point is that
we now possess a reduced model which allows a
direct use of the geometric and thermodynamics
properties of the PDEs model to develop estima-
tion or control algorithms. Both the model and
the discretization method apply for a large class of
distributed parameters thermodynamics systems.
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