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Abstract: The reduction of the time required to determine oil content is important in the 

production of petroleum waxes. Here, it is aimed to generate a model whose output (the 

inferred oil content) is obtained from inputs given by other characterization parameters 

(needle penetration, viscosity, density and refractive index) that are obtained from simpler 

experiments. Laboratory experiment data together with industrial data were employed in 

the modeling. These ‘real’ data were compared with predictions made by the linear 

models and artificial neural networks. The networks outperform the linear models, as they 

generate smaller residuals in the whole operational range considered. Copyright © 2005 

IFAC
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1. INTRODUCTION 

Oil content in petroleum waxes is presently 

measured by standard experiments recommended by 

ASTM: ASTM D 721 (to oil content lower than 15% 

m/m) and D 3235 (to oil content bigger than 15% 

m/m). The experiments are done with complex glass 

apparatus and demand a lot of time. It is possible to 

develop correlations between physic properties and 

oil content to help works that need the result of this 

property in a short time. To do this, one of the 

methods is the use of artificial neural networks. 

Artificial neural networks are computational technics 

that present a mathematic model inspired in neuron 

structures of intelligent organisms and that acquire 

knowledge from experience (Haykin, 1999). The use 

of neural networks depends on the ability to adapt it 

to the problem under consideration, by changing the 

synaptic weights (in the ‘learning’ phase) to increase 

efficiency.

Neural networks have been extensively used to 

represent non linear input-output dependencies, as it 

has been proved that they can approximate arbitrary 

well any continuous function (Funahashi; Hecht-

Nielsen, 1989; Hornik, 1989). 

This work comprises two kinds of investigation: 

experimental and modeling. In the first approach, 

values of needle penetration, viscosity, density and 

refractive index from samples of one kind of wax 

with different oil contents were acquired. These 

properties depend on composition and crystallization 

of wax. In the second one, those data were processed 

to develop linear models and neural networks in 

order to predict this characteristic. This technique 

allows the development of a calculation program to 

be used works in a refinery environment, so that, 

based on it, the operator can decide about variables 

of the process. It is also possible to design a control 

procedure that acts on the process based on inference 

of the model 

2. SCIENTIFIC METHODOLOGY 

2.1 Production and analysis of petroleum waxes

One of the processes of production of waxes is 

deoiling, that is, extraction of oil in waxes. The 

process consists in cooling slack wax until a 

temperature in which only waxes get solid, allowing 

their separation by filtration. The kind of 

crystallization determines if the wax will get more oil 

content during this process, determining the solvent 

consumption. Hydrocarbon waxes constituted mostly 

by n-alkanes (macrocrystallines), with crystals like 

‘dishes’, have a structure easier to remove oil. 

Branches Waxes (microcrystallines), with crystals 

like ‘needles’, present more difficulty to remove oil 

in deoiling (Speight, 2001). 

The excess of oil in a wax reduces hardness, and this 

is inconvenient to store the final product. Oil is also 

responsible for the appearance of spots, which is a 

bad characteristic when the end use product is 

candle. Hardness is measured by needle penetration 

(ASTM D1321, 2004). 
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Oil in a wax means that the product has some

structures that have more affinity with oil than wax.

These can be identified by the following

experiments: viscosity (ASTM D445, 2004), density

(ASTM D4052, 1996) and refractive index (ASTM,

D1218, 2002) in waxes and that is why these

parameters and needle penetration are important to

predict oil content (Lima et. al, 2005).

2.2 Experimental methodology

Oil Content (ASTM D 721, 1985)

The sample is dissolved in methyl ethyl ketone,

afterwards the solution is cooled to –32°C (–25°F) to

precipitate the wax, and filtered. Evaporating the 

methyl ethyl ketone and weighing the residue

determine the oil content of the filtrate.

Viscosity (ASTM D445)

This method specifies a procedure for the 

determination of the kinematic viscosity by

measuring the time for a volume of liquid to flow 

under gravity through a calibrated glass capillary

viscometer. The dynamic viscosity can be obtained

by multiplying the kinematic viscosity by the density

of the liquid.

Density (ASTM D4052)

This experiment covers the determination of the

density or relative density of petroleum distillates

and viscous oils. A small volume (approximately 0.7

mL) of liquid sample is introduced into an oscillating

sample tube and the change in oscillating frequency

caused by the change in the mass of the tube is used 

in conjunction with calibration data to determine the

density of the sample.

Needle Penetration (ASTM D1321)

The depth penetrated (0.1 mm) in a cylinder of wax

by a standard needle, with a load of 100g, in a 

specific temperature, during 5 seconds, corresponds

to the ‘needle penetration’ measurement.

Refractive Index (ASTM D1218)

The refractive index is measured using a high-

resolution refractometer of an optical-mechanical or 

automatic digital type with the prism temperature

accurately controlled. The instrument principle is 

based on the critical angle concept. 

2.3 Basic concepts about neural networks

A common network has multilayer configuration

with parallel processing. The most used is MLP 

(multilayer perceptron), with an input layer, a hidden

layer and an output layer (Fig. 3.).

Fig. 3.  Example of  MLP network (De Souza

Jr.,1993).

Data are fed in the input layer, which has a neuron

per each input variable. Each one of the neurons in 

input layer is connected to each neuron of the hidden

layer. Seemingly, each hidden neuron is connected to 

each unit of the output layer. The number of neurons

in the output layer is the same number of output

variables. Signals arriving on a neuron go to cell

body, where they are added to others that come from

other neurons of the previous layer. The ‘j’ neuron

(Fig. 4.) from the layer (k+1) receives a set of inputs

spi,k (i = 1, ..., nk) corresponding to the outputs of nk

neurons from previous layer. These outputs were

influenced by wjik weights that correspond to each 

connection. The neuron sums inputs and the resultant

value is added to a bias (an inner limit of activation)

represented by j,k+1. The response spj,k+1 is produced

by ‘j’ neuron to this signal, according to an activation

function f(   ) called transfer function (De Souza Jr.,

1993).

Fig. 4. The jth Neuron (De Souza Jr., 1993).

Common transfer functions are:

Linear function:

f pj k pj k, ,1 1
(1)

Sigmoidal function:

f pj k pj k, ,exp1 1

1
1

 (2)

Hyperbolic function:

f pj k pj k, ,tanh1 1
  (3)

The training phase of a neural network consists in 

giving a set of data, with inputs and outputs known,

so weights and biases for each neuron of network are

adjusted with training algorithms using prediction

errors, until network results in correct predictions of
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outputs. The procedure is iterative and continues

until minimization of the global error function is 

reached. A second subset of data is randomly chosen 

for selection section or validation. These data are not

used in the adjustment of weights and biases during

training section, but performance of network is

checked during the training with them. If error of

selection data is not decreasing or begins to increase

for a specified number of iterations, training is

stopped. If training does not have restrictions, neural

networks can describe training data very well, but

usually describe new data poorly. Because of this, a

third subset of data is randomly chosen as an

additional check of the capacity of generalization of 

the neural network (De Souza Jr., 1993).

2.4 Experimental Procedure

In this section a sample of macrocrystalline wax 

150/155 produced from heavy oil was utilized. The

experiment of oil content was performed according 

to ASTM D 721 and resulted 0.69% m/m. Different

fractions of heavy base oil were added to 15 portions

of original sample to obtain new samples with oil

content ranging from 1 to 15% m/m. The

experiments of needle penetration 25ºC, refractive

index 70ºC, viscosity 80ºC and density 70ºC were

performed three times for each sample.

In addiction to the laboratory data, results of

experiments performed on final products of a 

refinery like 120/125, 130/135, 140/145 and 150/155

waxes, produced by the same petroleum, shown in

Table 1 were considered in the study. The complete

set of results (industrial plus laboratory) is presented

on Figures 5,6,7 and 8.

Table 1. Results from experiments with different

kinds of final waxes from the same petroleum.

Oil

Content

(%m/m)

Needle

Penetration

 (1/10 mm)

Viscosity

 80ºC

(cSt)

Density

a 70ºC 

Refractive

Index

0.97 21.0 9.228 0.7895 1.4410

0.98 21.2 9.285 0.7892 1.4410

0.99 21.8 9.069 0.789 1.4405

1.47 22.5 8.149 0.7871 1.4401

1.06 25.2 8.417 0.7877 1.4402

1.06 22.0 8.369 0.7876 1.4402

1.01 22.0 8.671 0.7885 1.4404

1.07 24.0 8.348 0.7876 1.4402

0.99 20.0 9.018 0.7889 1.4408

1.09 16.0 5.254 0.7757 1.4355

0.99 16.0 5.183 0.8097 1.4352

0.91 25.0 5.322 0.7752 1.4353

0.44 15.2 5.19 0.7748 1.4339

0.54 25.0 5.449 0.7752 1.4369

0.94 43.0 5.343 0.7759 1.4344

0.54 15.0 5.141 0.7747 1.4352

0.82 20.0 5.235 0.7751 1.4341

3.01 31.6 4.655 0.7733 1.4335

2.96 43.6 4.217 0.7712 1.4320

IR X Oil Content

 Mean
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Fig. 5. Results of Index Refraction vs Oil Content
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Fig. 6. Results of Density vs Oil Content

Viscosity X Oil Content
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Fig. 7. Results of Viscosity vs Oil Content

Needle Penetration X Oil Content
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Fig. 8. Results of Needle Penetration vs Oil Content
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2.5 Simple Linear Regression

Prior to linear regression, the data were analysed for

autlier detection (value outside the range between +

or – 2,5 /n1/2 ) and no outliers where found. The

observation of Figures 5 to 8 shows that the viscosity

measurement has a large variability. Additionally, it 

is noticed that for medium and high oil content

values an approximate linear dependence is observed

between this characteristic and the other ones

studied. So, simple linear regression models were 

tested first.

The simple linear regression between each variable

and the oil content is presented in Figures 9 to 12.

Observed Values vs. Predicted

Dependent variable: Oil content

Independent Variable: Refractive Index

(Analys is sample)
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Fig. 9. Linear Regression – Refractive Index X Oil

Content

Observed Values vs. Predicted

Dependent variable: Oil Content

Independent variable: Density

(Analys is sample)
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Fig. 10. Linear Regression – Density vs Oil Content

Observed Values vs. Predicted

Dependent variable: Oil Content

Independent variable: Viscosity

(Analys is sample)
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Fig. 11. Linear Regression – Viscosity vs Oil

Content

Observed Values vs. Predicted

Dependent variable: Oil Content

Independent variable : Needle Penetration

(Analys is sample)
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Fig. 12. Linear Regression – Needle Penetration vs

Oil Content

The R-square (also known as determination

coefficient) values of the linear regressions are in 

Table 2. This parameter indicates the percentage of

the data variation that is explained by the linear

model.

Table 2. R-square of linear regressions

Variables X Oil Content

R-square

Penetration 0.9564

Viscosity 0.6908

Density 0.9823

Refractive Index 0.9725

Viscosity has the worst result for linear analysis, due

to its higher variation. For values between 0 and 6% 

m/m of oil content, linear predictions show the

higher deviations. However, this range is the most

interesting one, taking into consideration the final

products. This motivated the use of non-linear 

models in this work. Neural networks were assumed,

as they do not demand that the specific non-linear 

dependence is explicitly described.

2.6 Building neural network

The complete set of data was randomly separated in

three subsets (in proportion 2:1:1) for training,

selection (validation) and test (a second independent

validation).

The software S TATISTICA© 6.0 was used to select

the best network, based on data training and

validation, through statistical analysis of the residuals

of the predictions.

3. DISCUSSIONS AND RESULTS

A descriptive statistic analysis can be observed on

Table 3. SD ratio is the ratio between standard

deviation of difference between predict values and

outputs, and Standard deviation between outputs and

its average, that is, ratio between prediction deviation

and deviation of real data from its average. 
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The best regression model is the one with lower SD

ratio and networks with the best performances has

this value closer to 0. An MLP with performance

ranked as ‘Excellent’ was obtained, that uses 

backpropagation method of calculation, with an input

layer operating with 4 neurons and linear functions, 9

neurons in hidden layer with hyperbolic functions

and 1 linear neuron in output layer. The performance

of non-linear network was compared with the best

results obtained from the best linear network, with 4

input neurons and one output, as shown in Table 3.

An observation of SD ratio indicates that the

networks can be used to predict the property

proposed and MLP network is better than linear, as

the MLP network has a SD ration five times lower

than the linear model.

Table 3. Results from Statistica© of statistics 

analysis  of networks

Descriptive Statistics Linear MLP

Average Error 0.2472 -0.04306

SD Error 1.465 0.3129

Absolute Average Error 0.9363 0.2544

SD Ratio 0.3053 0.06517

Correlation 0.9525 0.9979

In Table 4, it is possible to see the performance

parameters for training, selection, and test that

represent SD ratios for those sections. The MLP 

network has lower values to SD ratios and errors,

proving itself as more adequate to be used for

prediction.

Table 4. Results from Statistica© for training , 

selection and test of networks.
Training Summary-Performances

Parameter Train Selection Test Error

Train

Error

Selection

Error

Test

MLP 0.06162 0.05458 0.09213 0.02151 0.02449 0.02541

Linear 0.1840 0.4667 0.2866 0.06054 0.1610 0.09181

In Figure 12 it is possible to see the results of 

predicted versus observed values for MLP and

Linear networks. The straight line to MLP shows that 

predictions are satisfactory. The linear model

presents very high deviations at low oil content

values, which makes it unadvisable to use in that

range.

Oil Content, Observed X  Oil Content, Predict 

Model

LINEAR

MLP
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Fig.12. Predict oil contents X observed oil contents

The sensitivity analysis of inputs shows the relative

contribution of each variable. Each variable is treated 

as if it were unavailable for analysis, being

substituted by its average value. Global error of 

network when the variable is not available is divided

by global error when it is available, resulting a ratio

that should be bigger than 1.0, if variable contributes

to the solution of the problem. The results are in

Table 5. All variables have influence on oil content,

receiving rank 1st the most influent variable.

Table 5. Results of sensitivity analysis from

Statistica©  for networks

Sensibility Analysis 
Needle

Penetration

Viscosity Density Refractive

Index

MLP

Ratio
4.287 11.51 7.855 9.258

MLP

Rank
4 th 1st 3rd 2nd

Linear

Ratio
1.779 3.070 1.034 4.895

Linear

Rank
3rd 2nd 4th 1st

4. CONCLUSIONS

It is possible to see that the trained neural network

makes good predictions to the set of data obtained

from the proposed experiments and to the set of

results obtained from final products of a refinery.

The model proposed of a multilayer network as a 

MLP (4-9-1), with hyperbolic functions in the hided

layer, presented correlation 0.9979 against 0.9525 of

the linear model, beyond of best train, selection and

test performances.

Additionally, as neural networks may outfit the data,

special care was taken here on order to avoid this risk

by using two validation (selection and test) data sets

The linear models can be considered as satisfactory if 

the range of oil content is above 6 % m/m. However

for values between 0 to 6 %, linear models produce 

very large errors (even negative values may be 

obtained).

As this low range is important for the final product,

the ANNs reveal itself as the best option to infer oil

content from characteristics that may be obtained

through more rapid experiments.

The neural network can be converted in a program

written in C++, and interfaced, using a man machine

interface, to the operator, so that he or she can use to

get the result of oil content from the inputs

considered. Additionally, a controller can be

implemented to act on process by changing variables

based on that inference.

The characteristics of petroleum processed to 

production of waxes have influence on the physical

properties used to the prediction context proposed in

this paper.  This study was performed with a product

of one kind of petroleum. To another kind of

petroleum, it would be necessary to retrain the neural

network including the new data.
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