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Abstract
A new awareness on modelling is growing in the control-oriented community recognising the fact
that control is dominantly model based. Since control is about manipulating certain characteris-
tics of the plant, it is no surprise that modelling for control focuses on extracting exactly those
characteristics of the plant that are to be controlled. This invariably induces the use of time scale
assumptions and consequently model reduction methods. These assumptions lead to a time-scale
separation, which results in a layered control structure, with the control loops getting slower as one
moves upwards in the hierarchy of time-scales.
Recycle structures are very common. The components may be fast, but the overall structure includ-
ing the loop is usually much slower because of the recycle. These structures thus lend themselves
to the application of time-scale assumptions. We demonstrate that any of these structures can be
analysed. Starting with a first-principle based representation that makes no particular assumption
on the nature of the process except that of a large recycle and fast internal dynamics, we derive
a first-order approximation of a system. The result is generic and not dependent on the particular
nature of the individual processes other structural properties of the process.
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Background
One observes that currently larger and larger

systems are being controlled and since the control
methods are increasingly model based, the dimen-
sionality of the model becomes a serious issue [2].
In many cases, whilst the control algorithms are
available, computing is not up to solve the thus-
formulated problems in real-time. It is also observed
that one often gets quite satisfactory results from
low-order models, which brings about the thought
that one should be able to extract the control-relevant
dynamics from the complex models and use the
reduced-order model instead for control [1]. Feed-
back makes control rather robust to a certain class
of modelling errors. Order of the approximation
is one of them, if one does not insist on very fast
control. The consequence of this thinking leads in
recent years to a revitalisation of model reduction
based on time-scale assumptions.
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Time-scale assumptions are done all the time
when modelling processes. Mostly assumptions
seem to just "occur" – they are mostly done intrinsi-
cally, for example one makes the assumption of an
ideally-stirred tank reactor, which in terms of time
scales implies that the internal flows are much faster
than the flows in and out of the tank. For the il-
lustrative example, we shall use an abstraction in-
troduced by this group over the past years as part
of the Modeller project [4, 5, 7] to demonstrate that
any recycle process can be captured in this frame-
work. Thus models, such as they are published in
for example [3], which also motivated this deriva-
tion, fold into the discussion below and in terms of
assuming event dynamics for reactions into [4] thus
covering the two important domains of time scale
assumptions made in process engineering.
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Proposition
Processes with (multiple) internal recycles ex-

hibit in the large time scale uniform intensities in
the recycle and in the fast time scale, a change in the
input will result in an internal profile of the inten-
sities. The time scales introduced are related to the
dynamics of the capacitive elements in the recycles1.

More precisely, in the large time scale, slow
changes in the continuous (positive) input will re-
sult in a uniform profile of the intensive quantities if
the internal time constants are relatively small. Also,
pulses of extensive quantity spread instantaneously
in the recycle’s capacitive elements. On the short
time scale the effects invert: the slow variations in
the positive input streams have no visible effect on
the intensities of the elements in the recycles and fast
injections cause a distribution in the intensities.

Process Definition
For the analysis we choose a general recycle

process, which consists of a number of capacitive
elements2 in the recycles and in general any number
of inflows and outflows. For the purpose of simplic-
ity but without any limitation to the applicability of
the result, though, we limit the process to one in-
flow and one outflow. Furthermore, we firstly limit
the discussion to a single recycle process, which
readily extends to a multiple, interlocking recycle
process later. The choice of the model is motivated
by such models as they were used in [6] but also
models that are constructed in computational fluid
mechanic packages. We assume that no transforma-
tion of extensive quantity (i.e. mass transformation
in the form of reaction) or a very fast transformation
is taking place in the plant. In the figures, the cir-
cles represent capacitive elements, here modelled as
single lumped systems. The arrows mark mass flow,
here for simplicity unidirectional, that is, the flow
does not change direction during the viewed time
period. The plant has two special elements, namely
the one where the input stream enters the recycles,
here labelled with 1 and the one where the outflow
is attached, here shown as e. The generic element in

1It will be necessary to make assumptions about the distri-
bution of the relative dynamics of the elements in the recycles
asking for relative uniform distribution.

2What is here called capacitive element is in other parts of
the literature often called compartment

Q̂F|1

Q̂e|P

Q̂i|i+ 1

recycle 1

F

P

1

n 2

ei

Figure 1: A one recycle, one-input, one-output
process. The recycle represents the plant being mod-
elled. The plants environment has two elements both
reservoirs, that is infinitely large capacities. The F
indicates the feed reservoir, the P the product reser-
voir. The lump i is an arbitrary system in the recycle
without an inflow or an outflow to the environment.
The system 1 is where the inflow is connected and
the outflow is connected at the element e.

the cycle is labelled with an i.

The basic dynamic equations are then the con-
servation of fundamental extensive quantities, Q for
each lump, which balance the change in the system
with the in and outflows of fundamental extensive
quantity, Q̂ :

dQ1

dt
= Q̂n|1 − Q̂1|2 + Q̂F|1 ,

dQe

dt
= Q̂e− 1|e − Q̂e|e+ 1 − Q̂e|P ,

dQi

dt
= Q̂i− 1|i − Q̂i|i+ 1 .

With the appropriate definitions these equations are
cast into a matrix equation:

dQ
I

dt
= A

1
Q̂

I
+ B

E
Q̂

E
. (1)

In what follows, we shall refer to the matrix A
1

as
the recycle matrix, here the one stands for recycle
one. The two matrices A

1
and B

E
are direction co-

efficient matrixes for the internal flows and the ex-
ternal flows, respectively and represent the graph of
vertices (capacities) and arcs (flows):

A
1

:=
(
− s1 + s2,− s2 + s3, . . . ,− sn + s1

)
,

B
E

:=
(

s1,se

)
.
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si :: vector with zeros with a 1 at the ith position.

The basic model balances an arbitrary funda-
mental extensive quantity, which we denoted with
Q. The Q is thus placed into the role of the state.
The proposition suggests that we expect the inten-
sities in the recycle to converge to the same level.
This makes it necessary to introduce a state variable
transformation changing the representation from the
fundamental extensive quantity, being the state, to
an arbitrary intensive variable being the state. For
this purpose, we have to introduce a second exten-
sive quantity q, which is used to norm the fundamen-
tal extensive quantity Q, thereby defining the arbi-
trary intensive quanitity:ξ := Q

q . The second exten-
sive quantity is usually chosen such that it changes
only insignificantly as a consequence of the process.
Often it is a quantity such as volume, which im-
plies assumptions on the changes of the volume with
flow conditions and concentration changes. These
are order-of-magnitude assumption. If indeed a sec-
ond fundamental extensive quantity is chosen, we
need to label the fundamental extensive quantities:
ξ := Qa

Qb . Both will satisfy the balance equations (1).
Rewriting the balance equations for the fundamental
extensive quantity Qa one finds:

dQb ξ
I

dt
= A

1
Q̂

b

I
ξ

I
+ B

P
Q̂b

e|P ξ
I
+ bF Qb

F|1 ξF ,

with the matrices Qb and Q̂
b

I
being diagonal matri-

ces. The index I is used to mark internal quantities,
such as internal flows. The recycle matrix A

1
is not

changed, whilst the factor with the direction matrix
B

E
is split into two. The second part describes the

inflow part (term with bF ) and the first part describes
the outflow part (term with B

P
). This bi-sectioning

is a reflection of the fact that the streams inherit the
property of the source system. Since we assumed
unidirectional flow, the inflow inherits the proper-
ties of the feed system and the outflow the one of the
system where it is connected to the recycle, namely
the system labelled e. The outflow part, is the vector
se padded with the appropriately sized zero matrix
to form the B

P
matrix such that this matrix operates

on the full internal intensive property vector ξ
I
.

This representation is readily extended to
multiple-recycle systems. For each recycle a term
with a recycle matrix is added. Because the dimen-
sion of the model changes, the other matrices are

padded with zero blocks accordingly.

dQb ξ
I

dt
=

(
∑

r

A
r
Q̂

b

I
+ B

P
Q̂b

e|P

)
ξ

I
+

+ bF Qb
F|1 ξF (2)

The vector ξ
I

is a collection of the intensities of all
plant-internal subsystems. The running index r in-
dicates the recycle loops. The further extension to
the case of multiple inflows and outflows are also
readily accommodated by modifying the B

P
-matrix

and b f -vector as well as the inflow intensity vector
accordingly.

Time Scale Analysis
In the large time scale two extreme cases are of

interest. Firstly, it is of interest to analyse the be-
haviour of the fast part of the plant, here the internal
recycles, as the external flows are changing on the
large time scale, namely slowly. Secondly it is the
response to very fast changes, approximated by im-
pulses, of the fast part of the plant, though on the
large time scale.

Slowly Changing Inputs (Approx. Const.)

For the first case, the internal system will ap-
proach the equilibrium when making the order-of-
magnitude dynamics assumption of a constant input.
Thus for the fundamental extensive quantity Qa we
can write using the intensities:

0 = A
1

Q̂
b

I
ξ

I
+ B

P
Q̂b

e|P ξ
I
+ bF Q̂b

F|1 ξF , (3)

which has the solution: ξ
I
= e .ξF

Proof. The latter is proven easily by noticing the
fact that both fundamental extensive quantities sat-
isfy the balance equation. Thus

0 = A
1

Q̂
b

I
+ se Q̂b

e|P + bF Q̂b
F|1 ,

and by rewriting the vector of extensive quantities
as the product of a diagonal matrix, the said vector
as diagonal, with a vector of ones e := [1,1, . . . ,1]T ,
and noticing that se := B

P
e , the desired form is ob-

tained:

0 = A
1

Q̂
b

I
e+ B

P
Q̂b

e|P e+ bF Q̂b
F|1 .
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It is now apparent that

bF Q̂b
F|1 := −

(
A

1
Q̂

b

I
+ B

P
Q̂b

e|P

)
e ,

which when substituted into equation (3) yields

0 =
(

A
1

Q̂
b

I
+ B

P
Q̂b

e|P

) (
ξ

I
− eξF

)
proving the fact of the solution to equation (3).

Keys

Assumption The dynamics of the input is assumed
slow, so slow that it does not change significantly in
the time scale of the fast process.

Assumption Internal process dynamics are fast
compared to external dynamics.

Result Intensities approaches equilibrium quickly.

Result Internal intensities are uniform and identical
to the input, in the single input case, otherwise the
weighted average.

Result At steady state, all extensive quantities do not
change, thus norming may be done with any exten-
sive quantity.

The last statement is worth elaborating: Often the
volume is chosen as the norming extensive quantity.
As the above analysis shows, the requirement of be-
ing conserved is implied. If the result is applied to
slowly changing inputs, the volume, the density and
the internal volumes are not to change significantly.

A Slightly More Restricted Model

For the further development, we first generalize our
model and use the above-given definition for the in-
tensity. The norming of the fundamental extensive
quantity thus forming an intensive quantity is of-
ten based on the norming extensive quantity to not
change significantly in the attainable region in which
the process operates. Probably the most common
example is the volume. Constant volumes and con-
stant densities are frequently applicable assumptions
as the neglected nonlinearity is often very mild.

Let qb be the vector of norming extensive quan-
tities with each element referring to the respective
loop. The assumption is then constant norming
quantities in each loop. Thus:

dqb

dt
= 0 . (4)

and use it to slightly generalise the model (2):

dqb ξ
I

dt
=

(
∑

r

A
r
q̂b

I
+ se q̂b

e|P

)
ξ

I
+ bF qb

F|1 ξF .

Here the norming, constant extensive quantities have
been wrapped into a diagonal matrices qb and qb

I
.

With the assumption (4) this yields:

qb
dξ

I

dt
=

(
∑

r

A
r
q̂b

I
+ se q̂b

e|P

)
ξ

I
+ bF qb

F|1 ξF ,

The assumption (4) has further the consequence that
the flows of the extensive quantity q̂b in the indi-
vidual recycle loops are the same and that the in-
flow is identical to the outflow: q̂b

i− 1|i = q̂b
i|i+ 1 = :

q̂b
r for all i in loop r and , q̂b

F|1 = q̂b
e|P = : q̂b

E . For
simplicity reasons, we further assume that all capac-
itive elements in the plant are of equal size when
the capacity is measured in the quantity q. Thus
qb

m := qb
i for all i . These assumptions and the sub-

stitution of the consequently defined quantities sim-
plifies the model to

dξ
I

dt
=

(
∑

r

q̂b
r

qb
m

A
r
+

q̂b
E

qb
m

se

)
ξ

I
+

q̂b
E

qb
m

bF ξF ,

The fractions of flows of extensive quantity and ca-
pacity of elements measured in the same extensive
quantity are the inverse of the time constants as-
sociated with mixing in each element and the ef-
fect of the in- and outflow of to and from the
plant. The inverse of these time constants can be
interpreted as frequencies, in simple cases corner

frequencies:νr := q̂b
r

qb
m
, νE := q̂b

E
qb

m
. The model is

now cast in its final form:

dξ
I

dt
=

(
∑

r

νr A
r
+ νEse

)
ξ

I
+ νE bF ξF , (5)

= Aξ
I
+ bξF . (6)

Lumping : a First-Order Model

The idea of reducing the order is to lump all recy-
cles into one big lump. The result of this lumping
is a first-order differential equation, which under the
same mild conditions as assumed before, is linear
an can be readily integrated for simple inflow pro-
files, which change only the intensive properties of
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the inflow. Similarly the detailed model can be in-
tegrated. The difference is the approximation error
made when using the single-lump model instead of
the model with the recycles for a given inflow profile
in the intensive property of the feed stream.

Simply summing up all the small elements does
the lumping, which mathematically is achieved by
multiplying the extended version of equation (1)
with the left null matrix of the matrix A, which is
the transposed of a vector of ones e of correspond-
ing length :

eT dQ
I

dt
= eT

(
∑

r

A
r
Q̂

I
+ B

E
Q̂

E

)
.

This operation eliminates all internal flows. This
result can also be derived by recognising that col-
umn sum of the recycle matrices A

r
is null. Defin-

ing the lumped quantity: Q̄a
I := eT Q

I
. Thus dQ̄a

I
dt =

eT B
E

Q̂
E
. Again, the intensive quantity is of in-

terest. Thus we define the intensity for the lumped

system in the same way as before:ξ̄I := Q̄a
I

qb
I
. Again

assuming that the extensive quantity qb
I does not

change appreciably, and splitting the term with the
matrix B

E
as before, the model is cast into a new

form:

dξ̄I

dt
=

q̂b
E

qb
I

(
eT B

P
ξ

I
+ eT bFξF

)
.

In the case of the single inflow, single outflow

process, and defining the corner frequency ν̄ := q̂b
E

qb
I
,

which reduces to

dξ̄I

dt
= ν̄ (− ξe + ξF). (7)

This model describes the process still based on the
recycle model because it uses the intensive state ξe,
which can be obtained by integrating the recycle
model (6). The observation, though, that at steady
state all the internal intensities approach the same
value, stimulates the idea of simply replacing inten-
sity of the exit element with the averaged intensity
ξ̄I . Introducing a new intensive variable, indicating
with a ˜ the approximation of ξI , results the final ap-
proximate first-order model:

dξ̃I

dt
= ν̄

(
− ξ̃I + ξF

)
. (8)

Impulse Responses-A Comparison
A comparison of the impulse response of models

provides, when plotted, an excellent visual measure
for the fidelity of the models. Both, the impulse re-
sponse of the recycle model and the lumped model
are readily computed. Starting with the definition of
the inflow change: ξF(t):= ξ o

F δ(t− 0). The recycle
model is to be integrated for the solution, assuming
zero initial conditions:

ξ
I
(t) := νE

∫ t

0
eA(t− τ)bF ξF(τ)dτ ,

:= νE eA t bF ξ o
F .

The intensity of the element where the outflow is

F P1 2 3 4

5678

Figure 2: A sample plant with 8 lumps and three
streams

connect is the eth element in the solution vector. It is
selected by multiplying the solution with the trans-
posed of the e-selection vector, being zero except the
eth element, which is one. The such found intensity
ξe(t)is substituted into model (7):

dξ̄I

dt
= ν̄

(
− νE sT

e eA t bF ξ o
F + ξF(t)

)
,

which needs to be integrated again:

ξ̄I(t) = ν̄
(
− νE cT

e

∫ t

o
eAτ dτ bF ξ o

F +
∫ t

0
ξF(t)dτ

)
,

= ν̄
(
− νE cT

e A− 1
(

eA t − I
)

bF + 1
)

ξ o
F .

The solution for the approximate model (8) is sim-
ple: ξ̃I(t)= ν̄ e− νI t .ξ o

F Finally we can compute vari-

ous errors for ex.: e(t):= ξ̄I− ξ̃I . The attached plots,
show the solutions for the two recycle process shown
in Figure 2. The volumetric flows in the two recy-
cles are 1, and the inflow, respective the outflow, is
0.1. The total volume of the plant is set to 1 and the
internal volumes are all the same, thus the individ-
ual volume is 1/8 in this case, as there are 8 lumps
all together.
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Figure 3: Simulated impulse response of 8 equally
sized tanks and a single-lumped approx.

Plot 3 shows the impulse response of the 8
lumps, model 6, and the smooth middle one is the
impulse response of the single lump approximation
of model 7. Figure 4 finally shows the difference
between the model (7) and the model and (8).
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Figure 4: Error between model 7 and 8

Conclusions
The concise representation, as it was developed

as part of our Modeller project ( [7]) of process sys-
tems enables a generic analysis of such processes.
The here-discussed recycle process is generic and
not dependent of the nature of the sub-processes.
The analysis also makes the different steps and as-
sumptions nicely visible: 1) Split plant into fast and
slow section. 2) Assume slow interaction between
the fast and the slow section, thus limiting the spec-
trum of interaction and implicitly defining fast and
slow. 3) In the long time scale one assumes fast in-
ternal dynamics, which results in uniform intensive

quantities inside the system. 4) Using the above re-
sult, all the internal dynamics can be lumped into
one. 5) Notice: Time constants of the plant become
explicitly visible once one transforms from the space
of the conserved extensive quantities into the space
of the conjugate intensive quantities.

Results published in the literature, such as [3]
on special processes can be nicely generalised us-
ing the generic, physics-based representation as it is
presented here and in [4] if event dynamic reactions
are involved.
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