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Abstract: Supervisory control schem es of (com plex) plants utilize di erent form s
of autom ata or related structures such as Petri-nets. Em pirical, knowledge-based
m apping oftheplant’soperation into such a structurecannotbecom pleteorcorrect.
These autom ata can be com puted by a m odel-based approach, which guarantees
com pleteness and correctness within the lim its ofthe given m odel.The result is a
non-determ inistic autom aton (Philips2001),which howevercontainsno inform ation
about the range oftransition tim e that m ay be expected.This inform ation would
be extrem ely usefulfor the design of the derived operational procedures such as
supervisory controllers on alllevels and fault detection and fault isolation schem es.
Theproblem hasbeen form ulated severaltim esin thepast,forexam ple(Kowalewsky
1999,Engell1997).Here a solution to the problem is described,which applies to
plantsgenerating a m onotoneflow field forconstantinputs.

Keywords:Discrete-eventdynam icsystem s,tim ed autom aton,faultdetection,
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1.CURRENT STATE OF AFFAIRS

The increasing com plexity ofplants and the re-
quest for closer interaction between plants asks
for m ore and increasingly sophisticated autom a-
tion.Traditionally,process units were controlled
separately,butincreased interaction and required
co-ordination m ake itnecessary thatthe process
is viewed and analysed in its fullentity,giving
rise to the subject ofplant-wide control.On the
supervisory level,which also linksto them anage-
m ent levels such as planning and sequencing of
operations and capacity allocation,the plant is
event-driven.Currently used em piricalm odelling
techniquescannotguarantee the com pletenessor
correctnessofthedescription,thusonebranch of
research focused on the com putation ofone-step
autom aton representations for continuous plants
that are observed by an event detection m echa-
nism .These problem scan now be seen assolved.
Algorithm s exist for linear plants Preisig 1993,
(m onotone: Preisig 1996, general: Philips et al

1997,Pijpers1996)and nonlinearplants(Preisig
etal1997,Bruinsm a1997),which can alsohandle
allim portantexceptions.Also thestateexplosion
problem , which was seen as one of the m ajor
drawbacksoftheseautom aton com putations,has
been com pletely rem oved (Philips2001,Foerstner
2001).

Thecom putation oftheautom atam odelsisbased
on the representation depicted in Figure 1,the
firstbox representingthecontinuous(orfastsam -
pled tim e-discrete) plant, the second the event
detection m echanism ,which assum es knowledge
of the state and noise-free data. W e term this
m echanism domain observer 1 ,thereby indicating
thatthe extended eventdetection m echanism re-
constructsthe continuousstate from the output,
if it is not directly accessible, and generates a

1 –in deviation to Lunze, who uses the term quantizer.
By choosing the term domain observer, we want to place
emphasis on the required knowledge of the state, as it is
the state that is discretised and not the output.
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signalas the continuous state changes from one
subdom ain into another defined through bound-
ariesplaced into thestatespaceofthecontinuous
system .The resulting non-determ inistic autom a-
ton m odels have been used in a first study of
DEDS controlsynthesis m ethods(Philips1998b,
Philips1999)and faultdetection (Philips1998a,
Ram kum ar 1998,Ram kum ar 1999b,Ram kum ar
1999a,Lunze2000,Lunze1999).

ũ(k) x(t) x̃(k)

dom ain observer

� � �{Bc | c}ẋ = f(x(t), ũ(k))

continuousplant

Fig.1.Discrete modelling of a discretely observed
plant. The tilde quantities represent discrete-
event signals

In both applicationsitisapparentthatknowledge
ofm inim um and m axim um transition tim eswould
be a very usefulpiece ofinform ation.Thus the
problem isform ulated,ifsuch inform ation can be
obtained from the equations.Here we shallfocus
on linear plants,though it should be noted that
linearity isnotlim iting,ratherlim itationson the
flow field areim posed,asweshallseebelow.

2.PROBLEM FORM ULATION

Given a linear system with a continuous state,
x, and an input,̃u that, whilst continuous, is
changingonlyateventtim esand staysconstantin
between.The derivation m ay startfrom a m odel
thatisasgeneralasalinear-in-state,tim e-varying
m odeloftheform :

dx(t)
dt

= M(t)x(t)+ h(t;̃u), (1)

withx R
n, ũ R

m, which for sim plicity of
algebra we shall reduce to the standard linear,
tim e-constantplant:

dx(t)
dt

= Ax(t)+ Bũ(k). (2)

W e shall also assum e direct knowledge of the
state. If the state is not directly accessible, an
observerm ustbeadded to theplantwith thedy-
nam icsbeing fastenough so asto benegligibleon
the tim e scale the discrete-eventdynam ic system
operates.

For the autom aton representation, we split the
continuousstate dom ain into a setofhypercubes
by defining a setofordered boundary valuesβc

dc

with c identifying the state co-ordinate anddc

the m em bership ofthe value in the ordered set
of boundary values,βc

1 < βc
2 < ···< βc

nc
and

[βc
1, β

c
nc
]the validity range ofxc,defined on the

co-ordinatec.Forthe arbitrary co-ordinatec the
boundary setisthen:

Bc :={βc
dc
|dc := 1, ..., nc},

with.In practice,thesesetsarepartofthedefini-
tion ofthedom ain observer.Thedom ain observer
assigns m em bership of the state to an interval
dynam ically,thatis,the boundary pointbelongs
to the intervalfrom where the trajectory enters
theboundary (Philips2001).Thehypercubesare
conveniently defined in theform ofa m atrix

H :=
[[

βc
s , β

c
s+1

]]
:=

[
bc
−1,b

c
+1

]
,

with theb vectors being introduced for the el-
egance ofnotation later (Equation (3) ).Each
hypercube hasn! faces, each of which is a hy-
perplane.An eventES is defined as a crossing
of the boundary between two hypercubes, thus
a crossing of the actual continuous trajectory
through a faceS ofa hypercube.At this tim e,
the dom ain observerwillem ita signalindicating
this event.This definition of an event excludes
sim ultaneouscrossingofboundaries;thus,passing
through cornerpointsofthe hypercubes,defined
by theintervals,isnotpossible.Thelatterisjus-
tified assum ing a sequentialoutputline from the
dom ain observer.Thecom putation ofthediscrete
behaviour ofthe plant as shown in Figure 1 has
been reported elsewhere (Preisig 1993,Philipset
al1997,Preisig 1996).Here we wish to com pute
them inim um and m axim um tim eittakesforthe
system to m ovefrom onetransition to thenext.

3.WHAT’S THE NEXT POSSIBLE
TRANSITION

Havingdefined thetask ofcom putingthem inim al
and m axim altim e ittakesforeventEB to occur
after eventEA,we need first to find what event
EB is possible afterEA has occurred.For this
purpose a num ber ofobjects are required.Hav-
ing defined the hypercube representing a discrete
state in the continuous state space,and having
defined an eventasacrossingofthesurfaceofthe
hypercube,wedefinea trajectory as

X (xi):= {x(t)| t,x(ti)= xi},

and a bundleoftrajectoriesbeing

T A :={X (xi)|X (xi) A = 0},

whereby A isa bounded pieceofa hyperplane.

With these definitions we can define the surface
elem entsofthehypercubeconnected by a bundle
oftrajectories,and thustheconnected events,by
identifying theconnecting bundle:
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T A B :=T A T B ;

yielding therespectivesurfacepieces:

A|B :=T A B A ,
B|A :=T A B B .

Thetask isthusto find theconnecting trajectory
bundle.For this purpose,we split the surface of
thehypercubeintotwosets,nam ely onesetwhere
theflow entersF in and a setwheretheflow exits
F out.

Atthispoint,them ain assum ption isintroduced,
nam ely that the flow field is m onotone within
the extent of the hypercube. At first, this as-
sum ption appearsratherrestrictive.However,one
m ust keep in m ind that the flow field is here
for a process for which allthe inputs are being
keptconstant.M ostnaturalprocessesshow under
these conditions a m onotone behaviour.W e also
excludethetrivialcasein which theflow isparallel
with a hypercube’ssurface.

With theseconditions,thedirection oftheflow is:

s := sign(̇x(t)), t < , (3)

and the centre pointofthe entry surface and the
exitsurfaceofthehypercubecan bedeterm ined:

xin :=
[
bj
i

]
∀j

, i :=− sj ,

xout :=
[
bj
i

]
∀j

, i :=sj .

These points are the intersection of a set of
hyperplanes:

P in :=
{
P(xin

i ), i
}

.

P out :=
{
P(xout

i ), i
}

.

with theindividualhyperplanes:

P(xj):= {x |xj := bj
i , i {− sj}}.

Now thedi erentconnected piecesofthesurfaces
can becom puted:

R A,B :=T A P(xout
j ),

and theexitsurfacepiece

B|A :=R A,B B . (4)

where A F in and B F out.If the forward
intersectionB|A exists,thus the intersection is
non-em pty, the corresponding next event does
existand theoppositepieceofsurfaceon theentry
face is the intersection ofthe trajectory bundle
defined by theexitpieceA|B 2 :

2 We use here a more detailed notation by indicating the
sequence with which the elements of the respective faces

A|B :=T ΩB|A
A .

4.TRANSITION TIM E

For either ofthe two m odels (1,2)and knowing
what next transitions m ay occur,the transition
tim es can be calculated for any entry point by
solving3 thetranscendentalequation forT:

xb
k :=eT

k xb(T),

:=eT
k (e

∫ T

0

M(t) dt
(xa(0)+ ,

+

∫ T

0

e−
∫ t

0

M(τ) dτ h(t;̃u)dt)),

xb
k :=eT

k

(
eA T

(
xa(0)+

∫ T

0

e−A t Bũ dt

))
,

:=eT
k

(
eA T xa(0)+ A−1

(
eA T − I

)
Bũ

)
,

:=eT
k

(
g(T,xa)

)
,

where xa(T) a and xb(T) b and eT
k the

unity vector[0,0, ..., xk,0, ...,0], xk := 1 selecting
theco-ordinatethatdefinestheexitface.

5.THE 3-D SAM PLE SYSTEM

The sam ple system ,being linear and tim e con-
stant, :={A,B} being used as an illustration
in thecontinuation isgiven by them atrices

A :=

⎛
⎝ 0.8642 −0.6340 −0.0672
15.4736 −5.3626 −0.6678
10.2891 −2.4301 −1.5016

⎞
⎠ , (5)

B :=

⎛
⎝ −1

0
1

⎞
⎠ , (6)

with the input being kept constant at a given
value.With theeigenvaluesλ := [−1,−2,−3]the
system isasym ptotically stable.

TheFigures2,3,4,5,6,7show thedi erentpairs
ofsurface elem entsforthe sam ple system with a
zero input.The left-lower front corner being the
centreoftheentering surfaceand theright-upper
back cornerbeing thecentreoftheexitsurfaceof
thecube.

5.1An Alternative View

An interesting insight is obtained by looking at
the problem from a slightly di erent angle:One

are obtained. One may read B|A as (face element B given
face element A)
3 For a reference of solving linear, time-variant ODE’s see
for example Walter 1960, 1993
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Fig.2.Front(dark)to attached top (light).
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Fig.3.Bottom (dark)to oppositeback (light).
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Fig.4.Bottom (dark)to attached back (light).
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Fig.5.Front(dark)to attached back (light).
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Fig.6.Frontside(dark)to attached back (light).

can view the sectioning ofthe exit (entry) faces
as a projection of the entry (exit) edges onto
the opposite side with the dynam ic system being
the m echanism ofprojection.Figure 8 showsthe
projection ofthe entry edgeson the exitsurface,
which is done forward in tim e,and Figure 9 the
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Fig.7.Frontside(dark)to attached top (light).

projection ofthe exitedgeson the entry surface,
donebackward in tim e.In theFigure8 theentry
edge is shown in thick lines and the projections
in m edium lines.In the Figure 9,it is the exit
edgesin thick linesand thebackward projections
in m edium lines.
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Fig.8.Theview ofprojectingtheentryedgesonto
theflow-oppositefaces.
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Fig.9.Thebackwardsprojection oftheexitedges
onto the flow-opposite faces.The arrows in-
dicate the progress of the direction of the
begin points as related to the locus of the
projected points. The num bers to the left
ofthe m arked pointsindicate the respective
transition tim es.

6.FINDING THE LONGEST AND THE
SHORTEST TRAJECTORY IN A

M ONOTONE FIELD

In a m onotone flow field,the com putation ofthe
longest and the shortest tim e is an optim isation
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problem where the starting point,being elem ent
ofthe entry hypercube surface,is changed such
that one finds the m inim um and the m axim um
transition tim e:In m ore colloquialterm s to find
thelongestand theshortesttrajectory startingon
theentry surfaceofthehypercube.

The optim isation is rather sim ple if the objec-
tivefunction,nam ely thetransition tim echanges
m onotonicly with the adjustable variables,here
the position on the entry surface,because in a
m onotone field the two extrem es are associated
with opposite cornerpointsofthe boundary Gill
1980.It is su cient to prove m onotonic proper-
ties of the transition tim e as a function of the
starting point,which isidenticalofanalysing the
gradientofthe transition tim e changing with the
co-ordinateon theboundary isnotchanging sign.
Let

f(T,xa):= s(xb(T)− (eA T xa+ ,

+A−1 (eA T − I)Bũ)),

then,since the transition tim eT cannotbe com -
puted analytically,the im plicitfunction theorem
isto beused to com putethedesired gradient:

dT

dxa
:=−

fxa(T,xa)

fT(T,xa)

:=
− s eA T

s
(
AeA T xa + eA T Bũ

) .

Monotonic behaviour breaks down as the above
gradientpassesthrough a zero in one ofitscom -
ponents. At a first glance, the change of sign
could becaused by eitherofthenum eratororthe
denom inator.A briefanalysisthough revealsthat
itisthedenom inatorthatdeterm inesthelocation
ofthechange.
Proof : Consider the boundary Ωb to initially be close to
the starting boundary Ωa. The transition time can thus be
brought arbitrarily close to zero. As the target boundary
is moved away, the starting boundary can be moved as
well. Again, the difference can be kept arbitrarily small.
As long as the gradient does not change, direction, the
derivative remains in the same half plain. The sum, or the
integral does thus also change in the same direction, which
proves the fact that the transition time changes monotonic
with the initial location on the starting surface, until the
denominator changes sign. The latter is the locus of a
derivative in one co-ordinate being zero, which is on a flat
plane cutting the space into two monotonic sub-domains.
These local equilibrium plains intersect, if we constrain
the discussion to asymptotically stable (non-oscillatory)
systems, at the global equilibrium point.

Alternatively one can prove that the function
T(xa)ism onotone aslong asthetheright-hand-
side of the dynam ic m odel equations does not
changesign:
Proof : Given that Ax + Bũ does not change sign
(asymptotic behaviour), the inverse does not change sign

either and the integral with time is monotone and so is the
integral of the inverse. The monotone behaviour changes
as the sign of the integrand changes.

With the accum ulated inform ation, it is trivial
now to provide the m inim aland m axim altransi-
tion tim esforeach transition.In the caseswhere
the entry face is attached to the exit face,the
m inim altransition is always zero.The m axim al
transition isgiven by thelongesttrajectory form -
ing thetuberunning acrossthehypercube,which
is attached to the respective piece of the entry
face.Thusonly fourdi erentm axim altransition
tim es occur in the whole,independent ofthe di-
m ension ofthe problem .The transition tim esfor
theexam pleareshown in Figure8.

7.CONCLUSIONS

The surface of the hypercube splits into two
sections,the entry section and the exit section.
Ifthe flow isnot running in parallel with the co-
ordinates,there is only one centralentry corner
and only one central exit corner. Each of the
facesofthe hypercube belongsto one ofthe two
surfaces, nam ely the entry or the exit section.
Each faceissplitintosectionswhereby each ofthe
entry sections is connected with an exit section,
thus defining the reachable pieces ofthe surface
asa function oftheentry location.

The com putation ofthe di erentsurface sections
is done by finding the forward projection ofthe
centre entry corneronto the exitsurface and the
backward im age of the centre exit point onto
the entry surface.The edges of the entry faces
projectonto theexitsurfacesusing thedynam ics
of the process for the projection. The result is
the lines subdividing the exit faces.The inverse
com putation,nam ely the backward projection of
the centre exit point and the exit edges onto
the entry surface results the other set of face-
sectioning lines.

Them inim aland them axim altim esfora transi-
tion are associated with the centre cornerpoints
and theadditionaltwo trajectoriescutting across
the hypercube. Because the objective function,
nam ely thetransition tim eisam onotonefunction
ofthelocation on theentry surface,them axim um
and the m inim um are associated with transitions
from the cornerand edge pointsorto the corner
and edge points.Only four trajectories m ust be
com puted.

The principle ofthe com putation is not lim ited
to linear system s.Monotonicity is the only con-
dition being used.Notethatm onotonicity isonly
requested for the region ofthe continuous state
spacebeing covered by thediscretestatespaceat
constantinputs.
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