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Abstract: Both real-time and off-line optimizations are commonly performed in 

order to enhance productivity. The optimization problem is often posed as a non-

linear programming (NLP) problem solved by a SQP algorithm. When processes 

need to be described by differential equations, difficulties will arise in using SQP 

algorithms, since Jacobians of constraints described by differential equations will 

have to be evaluated. In this paper, we show how to derive analytical expressions for 

both Jacobian and Hessian matrices for the constraints described by ordinary 

differential equations, without increasing the dimension of the resultant NLP 

problem to be solved. Copyright © 2006 IFAC
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1. INTRODUCTION 

Globalization has lead to the necessity of optimally 

operating the chemical plants. Thus, not only is it 

necessary to adequately control the chemical 

processes, but, moreover, optimal operating 

conditions must be continuously forecast and 

implemented, which may be achieved by solving a 

real-time optimization (RTO) problem. As far as 

continuous processes described by concentrated 

parameters models are under regard, optimal 

operating policies can be obtained by solving 

nonlinear programming (NLP) problems, possessing 

constraints described solely by algebraic equations. 

SQP algorithms may effectively solve NLP problems 

and successful implementations of real time 

optimization strategies are well known (Zanin et al., 

2002, Jakhete et al., 1999, Ellis et al., 1998, Agrawal 

et al., 1996). When it comes to optimize continuous 

processes described by distributed models or semi-

batch and batch processes, one difficulty arises when 

the corresponding optimization problem is to be 

solved by a SQP algorithm. The latter will require 

that Jacobians or even a Hessian matrix be evaluated 

for the constraints represented by differential 

equations. One common approach to override the 

difficulties arisen from the mathematical description 

of the process by differential equations is to 

discretize the latter (Cuthrell and Biegler, 1989), i.e., 

the continuous state variables are transformed into 

several discrete variables. This approach leads to an 

increase in the dimension of the NLP problem to be 

solved and to the loss of information due to the 

discretization performed. In this paper, we aim to 

present a general procedure to analytically model 

Jacobians and Hessian matrices of the constraints 

described by ordinary differential equations (ODEs). 

The resulting model for evaluation of the Jacobians 

and Hessians is composed by ordinary differential 

equations that are coupled to the differential 

equations describing the process model. Thus, 

evaluation of the Jacobians and Hessians may be 

obtained with the same numerical precision as the 

solution of the process model and without any loss of 

information.  

In section 2, we briefly review the available different 

SQP algorithms emphasizing the need for the 

evaluation of Jacobians and even Hessians. In section 

3 we present guidelines on how to write the 
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optimization problem. In sections 4 and 5, the models 

for calculating Jacobians and Hessians are presented. 

In section 6, we apply the proposed procedure to the 

optimization problem of a batch reactor. The paper is 

finally concluded in section 7. 

2. GENERAL STEPS OF SQP ALGORITHMS 

Given a NLP problem as in (1), the SQP algorithms 

produce a sequence of values as in (2), where the 

search direction dk is the solution of the QP problem 

(3) and αk is so as to guarantee 1( ) ( )k kf x f x+ < .

Hence, the general idea of the SQP algorithms can be 

summarized in algorithm Ao.

*
( )

( *) min ( )
gx S B x

f x f x
∈ ∩

=  (1) 

where, 

{ }: ( ) 0; ( ) 0
n

S x R h x g x= ∈ = ≤ ,

: ; : ; :n n m n pf R R h R R g R R→ → → , *( )B xδ  is an 

open–ball of radius δ with center in x*. 

{ } *

1:k k k k kx x x x dα+→ = +  (2) 

1
min ( )

2k l

T T

k k k k k
d S

d H d f x d
∈

+ ∇  (3) 

where, Hk is either equal to 2
( , , )k k kL x λ µ∇ or an 

approximation to it and 2
( , , )k k kL x λ µ∇  is the 

Hessian evaluated at the point xk, λk, µk of the 

Lagrangian function associated with the NLP defined 

as in (4), SI is the set of constraints, which is either 

chosen as in (5) or (6).  

( , , ) ( ) ( ) ( )T TL x f x h x g xλ µ λ µ= + +  (4) 

where,  and λ µ  are the Lagrange multipliers of the 

equality and inequality constraints of the NLP. 

: ( ) ( );

( ) ( )

n T

k k k k

I T

k k k

d R h x d h x
S

g x d g x

⎧ ⎫∈ ∇ = −⎪ ⎪= ⎨ ⎬
∇ ≤ −⎪ ⎪⎩ ⎭

 (5) 

: ( ) ( );

( ) ( )

T

k k k k k

I T

k k k

d h x d h x
S

g x d g x

⎧ ⎫∈ ∆ ∇ = −⎪ ⎪= ⎨ ⎬
∇ ≤ −⎪ ⎪⎩ ⎭

 (6) 

where, k∆ is the trust region where the linear 

approximation SI of S is expected to hold well. 

Algorithm Ao

1. k = 0; xk = xo

2. Solve the QP problem to obtain dk

3. Obtain αk so that ( ) ( )k k k kf x d f xα+ <
4. xk+1 = xk + αk dk and check the optimality 

condition on xk+1. If it is satisfied stop otherwise 

k = k + 1  and return to 2. 

Differences in the SQP algorithms are related to 

whether analytical expressions are provided for the 

Hessian matrix Hk or if it is estimated from the 

Jacobian matrix of the constraints and enforced to be 

positive definite, to whether (5) or (6) are chosen as 

the constraints of the QP problem and in what 

manner αk is calculated (Tvrzská de Gouvêa and 

Odloak, 1998, Ternet and Biegler, 1998, Lucia et al., 

1996, Bartholomew-Biggs and Hernandez, 1995, 

Schmid and Biegler, 1994). Different 

implementations affect convergence properties and 

robustness of the SQP algorithm. Analytical 

expressions for both the Jacobians and the Hessian 

matrix may make the SQP algorithms achieve a 

quadratic convergence rate and by properly managing 

the nonconvex QP problems obtained with analytical 

expressions of Hk, robustness of the SQP algorithms 

may be increased (Tvrzská de Gouvêa and Odloak, 

1998). So it may be desired to have available not only 

analytical expressions for ( )T

kh x∇  and ( )T

kg x∇ ,

but also for Hk. As far as the constraints in (1) are 

solely described by algebraic equations, difficulties in 

establishing analytical expressions for the Jacobians 

and Hessian matrix are restricted to the difficulties in 

obtaining derivatives. When there are constraints 

described by ODEs, analytical expressions are not 

readily available and so the common practice 

(Cuthrell and Biegler, 1989) is to simply discretize 

the differential equations. By doing so, important 

process information may be lost and the SQP 

algorithm will have its convergence rate deteriorated. 

If discretization is not adequately performed, 

numerical instabilities may also occur. So it may be 

advantageous to have analytical expressions for the 

Jacobian and Hessian matrices of the constraints 

described by ODEs. In sections 4 and 5 we show how 

to derive differential equations that analytically 

describe the Jacobians and Hessian matrix for 

processes described by ODEs, which enables one to 

use SQP algorithms that explicitly deal with 

nonconvex QP subproblems.  

3. THE GENERAL OPTIMIZATION PROBLEM 

OF PROCESSES DESCRIBED BY ODEs 

Equation (7) generally describes optimization 

problems of processes described by ODEs. The 

economical objective function (f) is modeled by an 

algebraic equation. It may correspond to the batch 

time or to the heat consumption or to operational 

costs or any other desired economical specification. 

So it will typically depend on the initial conditions of 

the process (xo), on the operational time or on the 

length of the equipment, both of these latter variables 

denoted by t, on state variables x
e
, on the degrees of 

freedom of the process given by the manipulated 

variables (u) and on any other process variables z. In 

the formulation presented in equation (7), xe

corresponds to state values calculated by the SQP 

algorithm, i.e., these values must be equal to the 

solutions x of the differential equations that describe 

the process model given in equation (8). The general 

analytical solution x(xo,u,t) of (8) is not known, just 

its numerical one that must equal to xe
. In the 

formulation of the NLP problem presented in (7), the 

equality constraints h were written in an algebraic 

form and were divided into two groups. By means of 

the first group of equality constraints h1, the state 

variables are to be evaluated. Though h1 is written as 

an algebraic equation, x is actually the numerical 

solution of a system of ODEs. Therefore, for the 

evaluation of the Jacobian matrix of the constraints 

h1, derivatives in terms of xo, u and t must be 

IFAC - 804 - ADCHEM 2006



evaluated. In constraints h2, just algebraic equations 

are considered. Note that these constraints are written 

in terms of the state variables evaluated by the SQP 

algorithm (x
e
) and not in terms of the state variables 

evaluated by the solution of the ODEs (x). This is a 

subtle way to eliminate the dependence on the 

independent variable t of all variables not explicitly 

appearing in the differential term of the ODEs. Also 

note that xe
 may contain values for a same physical 

variable evaluated at different values of t. For 

example, if bound constraints are to be made on the 

temperature along a tubular reactor, different values 

for the state variable temperature must be available 

for different positions. Inequality constraints are 

presented in g. The remaining constraints correspond 

to bound constraints on the decision variables of the 

NLP problem described in (1). As to the dimension 

of the NLP problem (1), it is assumed that: zn
z R∈ ;

, xne

ox x R∈ , un
u R∈ , t R∈ ,

2 1: z x un n nf R R
+ + + → ;

2 1

1 : x u xn n n
h R R

+ + → ;
2 1

2 : z x u xn n n m n
h R R

+ + + −→ ;

2 1
: z x un n n pg R R

+ + + → .

, , , ,

1

2

min max

min max

min max

min max

max

min ( , , , , )

. . ( , , , ) ( , , ) 0

( , , , , ) 0

( , , , , ) 0

0

e
o

e

o
z x x u t

e e

o o

e

o

e

o

e e e

o o o

f z x x u t

s t h x x u t x x x u t

h z x x u t

g z x x u t

z z z

x x x

x x x

u u u

t t

= − + =

=

≤

≤ ≤

≤ ≤

≤ ≤

≤ ≤

≤ ≤

 (7) 

( , , )ox h x u t=�  (8) 

Since f, h2 and g are algebraic equations, the 

evaluation of their derivatives with respect to the 

decision variables is straightforward and well known. 

So, no further comments will be made. Equation (7) 

can be discretized by either finite differences or 

orthogonal collocation methods and put in an 

algebraic form as in (9), where now x
e
 are estimates 

for the state variables taken at nd discretization 

points. Thus, instead of nx state variables, one will 

now have xn nd×  state variables and the dimension 

of the NLP problem (7) will be significantly 

increased, which will affect the performance of the 

SQP algorithms. Not only there will be the need to 

discretize the state variables, but if the manipulated 

variables are dependent on t, they will also have to be 

discretized, leading to another increase in the 

dimension of the SQP. At the same time, loss of 

information is inevitable. So it is expected that the 

number of iterations for convergence to an optimal 

solution will augment as well as the computational 

cost of each SQP iteration. 

1( , , , ) 0e

oh x x u t =  (9) 

So there is the interest in not performing any 

discretization and derive analytical expressions for 

both Jacobain and Hessian matrices of the constraints 

in the partition h1. In order to facilitate the derivation 

of analytical expressions for the Jacobians and 

Hessians of h1, it is convenient that some further 

assumptions be taken on the way the equations are 

written in (7), which are: 

• All manipulated variables are assumed to be 

independent.  

• The initial conditions are independent from the 

manipulated variables u.

With those assumptions, simple ordinary differential 

equations may be derived by means of which, the 

Jacobians and Hessians of the constraints h1 may be 

evaluated, as will be shown in the next two sections. 

The procedure will not increase the size of the NLP, 

will not result in any loss of process information and 

allows the manipulated variables to have a 

continuous or discrete dependence on t. Since 

analytical expressions are made available by the 

described procedure, SQP algorithms may be chosen 

in order to deal with nonconvex QPs and thus better 

convergence properties may be expected. There are 

some drawbacks, though. The analytical derivation of 

the expressions shown in sections 4 and 5 may be 

complex and the number of differential equations 

needed to be solved in order to evaluate both the 

Jacobians and Hessians may be large if either nx or nu

are too large. Fortunately, chemical processes 

typically have small number of degrees of freedom 

and so nu will be restricted to a small number.  

4. EVALUATION OF THE JACOBIAN MATRIX  

Since the constraints h1 as defined in equation (7) do 

not depend on z and depend linearly on x
e
, and taking 

(8) into account, the Jacobian matrix 1

Th∇  of the 

constraints h1 will have the general structure given in 

equation (10). 

( )

( )

1 1 1 1
1

,1 , 1

,1 , 1

, ,

0

, ,

x u

x x x x

x

x u

o

o o n n

n n n n

n o

o o n n

x x x x
h x u t

x x u u

I

x x x x
h x u t

x x u u

⎡ ⎤∂ ∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥−
⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

� �

� � �

� �

 (10) 

Let 
1, ,

,

; 1 ; 1i

i j x x

o j

x
y j n i n

x

∂
= = =

∂
� �  and 2, ,

i
i j

j

x
y

u

∂
=

∂
;

1 ; 1u xj n i n= =� � . So, for evaluating (10) at any 

point (xo, u, t), one has to obtain y1,i,j and y2,i,j. Since, 

nx differential equations in t will be solved in (8), the 

idea is to augment the number of differential 

equations in time and by means of the added ODEs, 

each y1,i,j and y2,i,j are to be evaluated. This may be 

done by adequately applying the chain rule as is 

shown in equation (11) for the evaluation of y1,i,j.

1, ,

, ,

i j i i

o j o j

y x x

t t x x t

⎛ ⎞∂ ∂ ∂∂ ∂ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (11) 
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Since, from (8) ( , , )i

i o

dx
h x u t

dt
= , equation (11) 

becomes equation (12). 

1, , ,

1 1, , , ,

1 , ,

x x

u

n n
i j o ki i i k

k ko j o k o j k o j
k j

n

i k i

k k o j o j

y xh h h x

t x x x x x

h u h t

u x t x

= =
≠

=

∂ ∂∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂

∑ ∑

∑
 (12) 

Since t is an independent variable, u and xo were 

assumed independent one from another as well as the 

initial conditions are also taken independently, 

equation (12) can be reduced to (13). 

1, ,

1, ,

1,

xn
i j i i

k j

ko j k

y h h
y

t x x=

∂ ∂ ∂
= +

∂ ∂ ∂∑  (13) 

A similar procedure is now applied to y2,i,j, as is 

shown in equations (14) and (15). 

2, ,

i i

i j

j j

x x
y

t t u u t

⎛ ⎞∂ ∂∂ ∂ ∂ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (14) 

2, ,

1 1

,

1 ,

x u

x

n n

i i k i k

i j

k kj k j k j
k j

n
o ki i

k o k j j

h h x h u
y

t u x u u u

xh h t

x u t u

= =
≠

=

∂ ∂ ∂ ∂ ∂∂ = + + +
∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂+ +
∂ ∂ ∂ ∂

∑ ∑

∑
 (15) 

Since uj and uk were also assumed to be independent 

one from another, equation (15) can be reduced to 

(16).

2, ,

2, ,

1

xn
i j i i

k j

kj k

y h h
y

t u x=

∂ ∂ ∂
= +

∂ ∂ ∂∑  (16) 

By adding equations (15) and (16) to the set of 

differential equations (8), one can simultaneously 

obtain the state variables x and the Jacobian matrix. It 

is noteworthy to note that 2 x un n  differential 

equations are needed to evaluate the Jacobian matrix. 

Since the number of degrees of freedom is usually 

not very large, the number of differential equations 

will not be too large.  

5. EVALUATION OF THE HESSIAN MATRIX 

OF THE CONSTRAINTS  

Equations (17) to (22) show the general block 

structure of the Hessian matrix associated with the i
th

constraint of h1. Recall that the Hessian matrix 
2

1,ih∇
is symmetric and so only the non-symmetrical 

elements are shown in (18) to (22). The first x zn n+
rows and columns of 

2

1,ih∇  will be composed of null 

vectors since h1 does not depend on z and depends 

linearly on x
e
.

1 3 4

2

2 2 51,

2

4 5 2

0 0

0
T

i

T T i

B B B

B B Bh

x
B B

t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∇ =
⎢ ⎥

∂⎢ ⎥
⎢ ⎥∂⎣ ⎦

 (17) 

2 2

2

, ,1,1

1

2

2

,

x

x

i i

o n oo

i

o n

x x

x xx

B

x

x

⎡ ⎤∂ ∂
⎢ ⎥∂ ∂∂⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥∂
⎢ ⎥∂⎢ ⎥⎣ ⎦

�

� �  (18) 

2 2

2

11

2

2

2

u

u

i i

n

i

n

x x

u uu

B

x

u

⎡ ⎤∂ ∂
⎢ ⎥∂ ∂∂⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥∂
⎢ ⎥∂⎢ ⎥⎣ ⎦

�

� �  (19) 

2 2

1 ,1 ,1

3

2 2

1 , ,

u

x u x

i i

o n o

i i

o n n o n

x x

u x u x

B

x x

u x u x

⎡ ⎤∂ ∂
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

�

� � �

�

 (20) 

2 2

4

,1 , x

T i i

o o n

x x
B

t x t x

⎡ ⎤∂ ∂
= ⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
�  (21) 

2 2

5

1 u

T i i

n

x x
B

t u t u

⎡ ⎤∂ ∂
= ⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
�  (22) 

As performed in section 4, the idea is again to 

evaluate several elements of the Hessian matrix, by 

differentiating them in time and appropriately apply 

the chain rule. The last column of the Hessian matrix 

(17) may be easily obtained and we will start with its 

characterization, which is done in equations (23) to 

(25).

2

1, , 1, ,

1, ,

xn

i i i

i j k j

ko j o j k

x h h
y y

t x t x x=

∂ ∂ ∂∂= = +
∂ ∂ ∂ ∂ ∂∑  (23) 

2

2, , 2, ,

1

xn

i i i

i j k j

kj j k

x h h
y y

t u t u x=

∂ ∂ ∂∂= = +
∂ ∂ ∂ ∂ ∂∑  (24) 

2
,

2
1 1 1 ,

x u xn n n
o ki i i k i k i

k k ik k o k

xx h h x h u h

t x t u t x tt = = =

∂∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∑ ∑ ∑
 (25) 

Since, the initial conditions are constants and by 

taking (8) into account, equation (25) is reduced to 

(26).

2

2
1 1

( , , )
x un n

i i i i k
k o

k kk k

x h h h u
h x u t

t x u tt = =

∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂∂ ∑ ∑  (26) 

Now, we will show how to evaluate each term in 

blocks B1 to B3. For that purpose, let for each 
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1, , xi n= � :
1

2

, , ,

, ,

i
B i k j

o k o j

x
y

x x

∂
=

∂ ∂
, 1, , xk n= � ,

1, , xj n= � ,
2

2

, , ,

,

i
B i k j

k o j

x
y

u x

∂
=

∂ ∂
, 1, , uk n= � ,

1, , xj n= �  and 
3

2

, , ,
i

B i k j

k j

x
y

u u

∂
=

∂ ∂
, 1, , uk n= � ,

1, , uj n= � . Each term of matrix B1 can be evaluated 

by integrating 
1 , , ,B i k jy  in time accordingly to equation 

(29). Similarly, each term of matrices B2 and B3 are 

obtained by integrating 
2 , , ,B i k jy  and 

3 , , ,B i k jy  in time 

accordingly to equations (32) and (35).  

Equation (29) is obtained by applying the chain rule 

to the derivative in time of 
1 , , ,B i k jy  as shown in (27) 

and by performing further simplifications as 

described next. Similar procedures are applied to 

2 , , ,B i k jy  and 
3 , , ,B i k jy , which is shown in the 

development that follows. 

1 , , ,

, ,

1, ,

, , ,

i
B i k j

o k o j

i
i j

o k o j o k

x
y

t t x x

x
y

x t x x t

⎛ ⎞⎛ ⎞∂∂ ∂ ∂= =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂∂ ∂ ∂ ∂⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

 (27) 

Thus, differentiating equation (13) in respect to xo,k,

one obtains: 

1

2 2
, , , 1, ,

1, ,

1, , , ,

xn
B i k j p ji i i

p j

po k o j o k p p o k

y yh h h
y

t x x x x x x=

⎛ ⎞∂ ∂∂ ∂ ∂
= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∑
 (28) 

Hence, 
1 , , ,B i k jy  is obtained by solving (29). 

1

1

2 2
, , ,

1, , , , ,

1, , ,

xn
B i k j i i i

p j B p k j

po k o j o k p p

y h h h
y y

t x x x x x=

⎛ ⎞∂ ∂ ∂ ∂
= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∑
 (29) 

In a similar way we perform with 
2 , , ,B i k jy , as shown 

in the equations that follow. 

2 , , ,

,

1, ,

,

i
B i k j

k o j

i
i j

k o j k

x
y

t t u x

x
y

u t x u t

⎛ ⎞⎛ ⎞∂∂ ∂ ∂= =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂∂ ∂ ∂ ∂⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

 (30) 

2

2 2
1, ,

, , , 1, ,

1,

xn
p ji i i

B i k j p j

pk o j k p p k

yh h h
y y

t u x u x x u=

⎛ ⎞∂∂ ∂ ∂∂ = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∑

 (31) 

2

2 2

, , , 1, , 4, , ,

1,

xn

i i i

B i k j p j p k j

pk o j k p p

h h h
y y y

t u x u x x=

⎛ ⎞∂ ∂ ∂∂ = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∑

 (32) 

Similarly we perform with 
3 , , ,B i k jy , as presented next. 

3 , , ,

2, ,

B i k j i

k j

i
i j

k j k

y x

t t u u

x
y

u t u u t

⎛ ⎞⎛ ⎞∂ ∂∂ ∂= =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂∂ ∂ ∂ ∂⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

 (33) 

3

2 2
, , ,

2, , 3, , ,

1

xn
B i k j i i i

i j p k j

p pk j k p

y h h h
y y

t xu u u x=

⎛ ⎞∂ ∂ ∂ ∂
= + +⎜ ⎟⎜ ⎟∂ ∂∂ ∂ ∂ ∂⎝ ⎠

∑
 (34) 

By adding equations (29), (32) and (34) to the set of 

differential equations formed by (8), (15) and (16), 

one can simultaneously obtain the state variables x,

the Jacobian and Hessian matrices of the constraints. 

In order to calculate the Hessian matrices for each 

one of the nx constraints, one will need to solve 

( ) ( )3 3
1

2

x x u u

u x

n n n n
n n

+ + +
+ +  differential 

equations, which indeed may become a large number 

if the number of state variables is large. It is also 

noteworthy to say that Hessian matrices related to 

real processes typically have a sparse structure and so 

several terms will be actually zero, which will also 

reduce the number of differential equations that will 

be solved. 

6. APPLICATION TO A BATCH REACTOR 

Because of the lack of space, in this section just a 

brief outline of the application of the proposed 

formulation to an academic simple problem will be 

presented. A thorough description of the application 

of the procedure to a problem of industrial interest 

will be presented elsewhere (Souza et al., 2006). 

Equation (35) corresponds to the optimization 

problem of minimizing the batch time of a reactor 

(tf), where a first order reaction is taking place and 

the concentration of specimen A must be kept below 

a limit value. The optimal temperature profile (T(t))

and the initial concentration (cA,o) are to be evaluated.  

, , , ( ),

max

max

min

. . ( ) 0

0

0 ( )

0

E
A o A f

f
c c T t t

E

A A f

E

A

f

t

s t c c t

c c

T t T

t

− + =

≤ ≤

≤ ≤
≥

 (35) 

where, cA(tf) is the concentration of A at the end of 

the batch and is obtained by solving (36). 

( );

RE

T tA
A o

dc
kc k k e

dt

−
= − =  (36) 

For any instant of time t, the Jacobian and the 

Hessian matrices of the equality constraint are given 

in equations (37) and (38) and the values for y1 to y5

are obtained for any instant t from the integration of 

equations (39) to (43). As for the initial conditions, 
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from the definitions presented in sections 4 and 5, it 

follows that y1=1 and y2 to y5 equal to 0. So one will 

have to integrate equations (36) together with 

equations (39) to (43) to obtain the Jacobian and 

Hessian matrices as in (37) and (38).  

[ ]1 21T

Ah y y kc∇ = − −  (37) 

5 4 1

2

4 3 22

2

1 22

0 0

0 R
A

R
A A

y y ky

E
h y y kc ky

T

E
ky kc ky k c

T

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥∇ = − −⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎢ ⎥⎢ ⎥⎣ ⎦

 (38) 

1

1

dy
ky

dt
= −  (39) 

2
22

R
A

dy E
kc ky

dt T
= − −  (40) 

2

3

2 32 3 2
2 2R R R

A

dy E E E
kc k y ky

dt T T T

⎡ ⎤⎛ ⎞= − − − −⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
 (41) 

4
1 42

Rdy E
y k ky

dt T
= − −  (42) 

5

5

dy
ky

dt
= −  (43) 

The above model describes an isothermal operation 

of the reactor, for which equation (36) has a trivial 

solution given by ,

kt

A A oc c e−=  and hence equations 

(37) and (38) must equal to equations (44) and (45). 

Table 1 gives the comparison of the Jacobian and 

Hessian matrices evaluated by equations (37) and 

(38) and by equations (44) and (45) with cA,o=1000

mol/m
3
, T=523 K, ko=3370 s

-1
, ER=7000 K

-1
 and 

tf=360 s.  

2
1

T kt

A A

E
h e c tk kc

T

−⎡ ⎤∇ = − − −⎢ ⎥⎣ ⎦
 (44) 

( )

2

2

2 2 2

2

2

0 0

0

. .2
0

(2,3) (4,3)

.
1

(2,4)

kt kt

A

A A

E
kt e ke

T

el elE E Eh
c kt kt

T T T T

el E
c k kt k c

T

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥= =⎛ ⎞∇ = ⎢ ⎥− +⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥=⎢ ⎥−⎢ ⎥⎢ ⎥⎣ ⎦

(45)

Table 1: Comparison of the elements of the Jacobian 

and Hessian matrices
element matrix evaluated by 

(37) or (38) 

evaluated by 

(44) or (45) 

error 

(%) 

(1,2) Th∇ 0.15470 0.15474 0.03 

(1,3) Th∇ -7.390 -7.389 0.01 

(2,2) 2h∇ 0 0 0 

(2,3) 2h∇ -0.0073896 -0.0073895 0.001 

(2,4) 2h∇ -8.0209e-4 -8.0208e-4 0.001 

(3,3) 2h∇ 0.19208 0.19203 0.03 

(3,4) 2h∇ 0.01779 0.01778 0.06 

7. CONCLUSIONS 

A general procedure was shown on how to develop 

analytical expressions for the evaluation of Jacobian 

and Hessian matrices for constraints described by 

ODEs. The developed expressions are also composed 

of ODEs and are obtained simultaneously with the 

integration of the process model. 
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