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Abstract: New alternatives for the multiperiod design and operation planning of 
multiproduct batch plants are presented. Unlike previous works, this approach 
configurates the plant in every period considering the assignment of parallel units of 
different sizes operating either in or out-of-phase. The objective function maximizes the 
net profit considering incomes, investment costs, and both product and raw material 
inventory costs. The model takes into account batch units available in discrete sizes, and 
both raw material and product inventories accounting for seasonal variations for supplies 
and demands. Nonlinearities have been eliminated by an efficient scheme in order to get a 
MILP model to guarantee global optimality. Copyright © 2005 IFAC
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1. INTRODUCTION 

Continuous growth in complexity, competitivity, and
uncertainty of the marketing environment of high 
added value chemicals and foodstuffs with a short 
life cycle has renewed the interest in batch 
operations and the development of optimization 
models. The main attraction of batch plants in this
context is their inherent flexibility in utilizing the 
various resources available for the manufacture of 
relatively small amounts of several different products 
within the same facilities. Several excellent papers 
on designing and production planning of 
multiproduct batch plants have already been 
published (Grossmann, and Sargent, 1979; 
Ravermark, 1995). The goal is to determine the size
and the number of batch units so they can meet 
production requirements in the provided time 
horizon.  

Since such products usually have demand patterns 
that vary over time due to market or seasonal 
changes, multiperiod optimization models have been 
the object of a great deal of research effort in this 
area (Birewar and Grossmann, 1990; Voudouris and 
Grossmann, 1993; Varvarezos et al. 1992; Van den 
Heever and Grossmann, 1999).  Multiperiod models 
for the design and operation planning in chemical 

plants involve designing plants that operate under 
variations in the model parameters along the time 
horizon. In general, this kind of problems is 
represented by mixed integer nonlinear programming 
(MINLP) models.  

Multiproduct batch plants manufacture a set of 
products using the same equipment operating in the 
same sequence. Since products differ from one 
another, each unit is shared by all products but they 
do not use their total capacity for all of them. The 
unit with the minimum capacity limits the batch size 
while the limiting cycle time is fixed by stage with 
the longest processing time. 

In order to reduce the investment cost, several 
alternatives are possible (Ravermark, 1995). The first 
one is the introduction of parallel units out of phase 
to reduce the cycle time if the unit has the longest 
operating time. Another option is to add a parallel
unit in phase to increase the operating capacity of the 
stage.  

The above referenced approaches for solving the 
multiperiod MINLP problem were restricted to equal 
periods in the design horizon (Voudouris, and 
Grossmann, 1993) or they did not include the design
into the formulation (Birewar, and Grossmann, 
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1990). Also, no previous design work has considered
the addition of parallel units in and out of phase,
which can take different sizes, and has not addressed 
the issue of raw materials inventory.  

This work is an attempt to expand the scope of 
multiperiod models for the design and production 
planning problems in multiproduct batch plants. In 
this paper, an optimization mixed integer linear 
programming (MILP) model which can handle 
seasonal changes of prices, costs and demands, 
discrete sizes of units, and inventories of both final 
products and raw materials will be proposed. 
Moreover, this multiperiod approach considers 
different period lengths and the possible alternatives 
to add parallel units that can have different sizes in 
every stage by using the concept of group introduced 
by Yoo, et. al. (1999) and extended by Montagna 
(2003). Also, this model takes into account flexible 
plant configurations where available units can be 
arranged in different structures for each product. In 
contrast to previous models that consider continuous 
sizes for the units, this model determines the optimal 
design selecting from available discrete sizes which 
corresponds to the real procurement of equipments. 
The major significance of the MILP model presented 
in this work is that it corresponds to a realistic design 
case that can be solved to global optimality with 
reasonable computation effort. 

The remainder of this paper is structured as follows. 
The next section presents the problem description. In 
the subsequent section, a multiperiod model which 
incorporates all the elements of the design and 
planning problem is formulated. The non linear 
terms in the formulation are transformed into linear 
ones in order to obtain a MILP model by using a 
reformulation strategy. The application of this 
formulation to a specific example is illustrated for a 
plant that produces Oleoresins. Finally, the 
conclusions are presented in the last section. 

2. PROBLEM STATEMENT 

In a multiperiod scenario a multiproduct batch plant 
processes I products (i = 1, 2, …, I). Every product
follows the same production sequence through all the 
J batch processing stages (j = 1, 2, …, J) of the plant. 
Each stage j may consist of one or more units k, 
which can have different sizes, operating either in
phase to increase capacity, or out of phase to 
decrease the cycle time. The size of unit k at stage j 
is Vjk (k = 1, 2, …, Kj), where Kj is the maximum 
number of units that can be added at stage j. Also,
the volume of each unit k at stage j is available in 
discrete sizes.  

The configuration of the batch units must be 
determined at each stage for every product. Kj units 
of stage j can be grouped in different ways for each 
product i (Yoo, et al., 1999). It is possible to have 
groups in which all units operate in parallel and in 
phase. The different groups at the stage operate in
parallel and out of phase. 

Since this is a multiperiod problem, the time horizon 
H is discretized into T (t = 1, 2, …, T) specified time 

periods Ht not necessarily of the same length. 
Bounds on products demands, costs and availability 
of raw materials vary from period to period. It will 
be assumed that the plant operates in single product 
campaign (SPC) mode under zero wait (ZW) policy 
in each time period. 

The objective is to maximize the benefit of the plant 
considering incomes from inventory and product 
sales, and capital costs. In the design of this plant, 
the problem lies in deciding the convenience of 
adding units at any time period, and selects the size 
of batch units Vjk among available discrete sizes νjs. 
At each time period t the model determines the 
number of groups and which of the existing units in a 
period are assigned to each of them. Moreover, it 
decides the amount of product to be produced qit, the 
number of batches nit and the total time Tit to produce 
product i. 

Inventory considerations are an important aspect of
plant operation. Actually, in practice, a plant may be 
faced with product demands and raw materials 
supplies that vary seasonally. So, products and raw
materials can be maintained in stock until needed. 

At the end of every period t, the levels of both final 
product IPit and raw material inventories IMit are 
obtained. Moreover, the total sales QSit, the amount 
of purchased raw material Cit, and the raw material to 
be used for the production RMit of product i in each 
period t are determined with this formulation. 
Semicontinuous and intermediate storage are not 
considered.  

3. MATHEMATICAL FORMULATION 

3.1 Assignment Constraints 

Several variables are introduced to determine the 
plant structure. Since the units can be added at any 
time period, a binary variable wjkt is used. The value 
of this variable is 1 if unit k is included in the plant 
structure at stage j in the period t; otherwise the
value is zero. Each unit k at stage j can be added only 
in one period: 

j i       w
T

t
jkt ,1 ∀≤∑              (1) 

The units are included in a sequential manner in 
order to avoid alternative optimal solutions with the 
same value for the objective function: 

t Kk i       ww j
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Since the units can be grouped in different ways at
each stage in every period, the binary variable yijgt is 
introduced. The value of this variable is equal to 1 if 
group g is generated for product i at stage j in time 
period t; otherwise, the value is zero. Group g is 
generated if at least one unit is assigned to it. Binary 
variable yijkgt is 1 if unit k of stage j is assigned to 
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group g for product i at period t; otherwise the 
variable is equal to zero (Montagna, 2003). 

tkj i       y
jG

g
ijkgt ,,,1

1

∀≤∑
=

             (3) 

Gj is the maximum number of groups allowed at 
stage j. Group g exists at stage j in period t only if at
least one unit is assigned to the group in that period: 
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            (4) 

If unit k is assigned to the group in period t, the
group must exist: 

   ,,,, tgkj i       yy ijgtijkgt ∀≤             (5) 

If the unit is assigned to group g at stage j for 
product i in period t, the unit must exist in that 
period: 
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1

tgkj i       wy
t

jktijkgt ∀≤∑
=τ

            (6) 

If the unit exists at stage j in the period t, it must be 
included in a group: 
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Redundant assignation to a group with the same 
value for the objective function is avoided by the 
following constraint (Yoo, et al., 1999): 
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This constraint order the different groups through a

weight kK j −2  assigned to each unit k. The order of 
the group is obtained by adding the weights of all 
units in the group.  

3.2 Design and Planning and Constraints 

Unit k at each stage j can be configured in a different 
way for every product i manufactured in the plant. Bit

is the batch size of product i in time period t. When 
Bit gets into a group of units, that is, units operating 
in phase, Bit is divided between the units that belong 
to the group. Thus, the sum of the units sizes 
included in the group g in every period t must be 
large enough to produce a batch of product i.  

tgj i       BSV itijt
gk

jkt ,,,∀⋅≥∑
∈

            (9) 

where Sijt is the size factor at stage j for product i, 
that can vary in each period taking into account 
seasonal effects. 

In this work, the unit sizes Vjk are considered 
available in discrete sizes νjs which correspond to the 

real commercial procurement of equipments. To 
rigorously tackle this situation, the binary variable 
zjks is introduced. It is one if unit k at stage j has size 
s; otherwise, it is zero. The variable Vjk is restricted 
to take values from the set { }

jjnjjjSV ννν ,,, 21 K= , 

where nj is the number of discrete sizes available for 
each stage. Using the previous definition, Vjk can be 
expressed in terms of discrete variables as:  

k j       zV
s

jksjsjk ,∀⋅=∑ν           (10) 

If the unit k at stage j is added in some period t, it 
must take a size s for the volume from the available 
sizes at that stage:   
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t
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s
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          (11) 

Only one of the available sizes at stage j must be 
selected if unit k at stage j exists: 

k j       z
s

jks , 1 ∀≤∑            (12) 

The amount of product i produced in time period t is  

t i       nBq ititit ,∀⋅=            (13) 

where nit is the batch number of product i in period t.  

By combining Eq. (9) and Eq. (13) the constraints 
take the following form: 
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Eq. (14) is a Big-M constraint that guarantees that
batches can be processed if group g exists; otherwise 
the constraint is redundant because of the large value 
of Mij. The value of Mij can be calculated by: 

j i    SntsKM ijt
U
itjsjij , ),max(),max( ∀⋅⋅= ν  (15) 

In order to obtain the volumes that belong to each 
group, it is necessary to multiply the volume Vjk by 
the binary variable yijkgt which produces the equation: 
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By substituting Eq. (12) into Eq. (16) new 
constraints can be formulated that restrict the 
volumes to discrete sizes:  
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Constraint (17) is nonlinear because of the product of 
binary variables. In order to reformulate these 
constraints as linear ones, the cross product nit zjks 

yijkgt can be eliminated by introducing the continuous 
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variable hijkgst that is equal to nit if zjks and yijkgt are 
one; otherwise the variable is equal to zero.   
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where nit
U is the upper bound for nit. The summation 

over the groups in Eq. (21) is performed in order to 
reduce the number of generated constraints because 
only one of the values is equal to nit.  

The inventory of final product i at the end of a period 
t, IPit, depends on the inventory that is left from the 
previous interval, IPi,t-1, the quantity produced and 
the total sales, QSit. 

t i       QSqIPIP itititit ,1 ∀−+= −           (22) 

In the same way, the inventory of raw material is: 

t i       RMCIMDEIM ititittiit ,11, ∀−+⋅= −−      (23) 

The amount of raw material in the inventory IMi0 for 
each product at the beginning of the time horizon is 
assumed to be given. Idem for the initial product 
inventory, IPi0. 

The amount assigned to sales must be less than the 
amount of product in inventory plus the quantity 
produced during a period:  

t i       qIPQS ititit ,1 ∀+≤ −           (24) 

The raw material necessary for the production of the 
product i is obtained from a mass balance: 

t i       qFRM ititit ,∀⋅=            (25) 

where Fit is a parameter that accounts for the process 
conversion, e.g. ratio of solvent to solids, time of 
contact etc. In this presentation only one raw 
material is considered. However this condition can 
be easily extended in order to accounting for several 
raw materials. 

The limiting cycle time is the maximum time 
between two successive batches of product i. It can
be calculated by the division between processing 
time tijt and the number of groups out of phase for 
product i at stage j in every period: 
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The total time for producing product i in time period 
t is defined as: 

t i       nTLT ititit ,   ∀⋅=            (27) 

By multiplying Eq.(28) by the number of batches, 
the expression takes the form: 
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Equation (28), however, is nonlinear. In order to 
obtain a linear expression, the following constraints 
are introduced: 
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where the variable binary uijgt is 1 if at stage j there 
are g groups operating out of phase. Substituting yijgt

for uijgt in Eq. (28), the expression gets the following 
form 
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This constraint is also nonlinear. To eliminate 
bilinear terms nit uijgt, a new nonnegative continuous 
variable eijgt is defined to represent this cross product 
(Voudouris and Grossmann, 1992). Then the 
following linear constraints are obtained: 
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where nit
U is the upper bound for nit. 

Considering the case of SPC-ZW policy in the period
t, all productions must be completed within the 
corresponding production horizon Ht: 

 t       HTLn t

I

i
itit ∀≤⋅∑             (35) 

Taking into account Eq. (27) the following 
expression is obtained: 

 t       HT t

I

i
it ∀≤∑             (36) 

3.3 Objective Function 

The strategic objective in this formulation is to 
maximize the operating profit of the plant, 
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The first term of the objective function is the income 
corresponding to the product sales where the 
parameter pit is the price of product i in each period. 
The second term is the cost of purchases with κit the 
price of raw material. The last two terms correspond 
to raw material and final product inventory costs, 
where εit and σit are inventory cost coefficients 
(Birewar, and Grossmann, 1990). Finally, the third 
term is the investment cost of the batch units and is 
obtained through the following equations: 
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where αjt and βjt are specific cost coefficients for 
each stage j in every period t. Eq.(10) is introduced 
into this expression to get: 
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where the terms jt

jsjtjstc β
να ⋅= represent the cost of 

standard batch vessels, and new variables rjkst are 
introduced to eliminate the product of binary 
variables zjks wjkt through the constraints: 

tsk j       wzr jktjksjkst ,,,  1 ∀−+≥           (41) 

10 ≤≤ jkstr             (42) 

4. MODEL RESOLUTION 

To sum up, the multiperiod model of a multiproduct 
batch plant is defined by maximizing the objective 
function represented by Eq. (37) using Eq. (40) as 
the term of investment cost and subject to constraints 
Eqs. (1) – (8), (11), (12), (15), (18) – (25), (29), (30), 
(32) – (34), (36), (41), (42) plus the upper bounds
that may apply. Bilinear terms have been eliminated
through an efficient method in order to generate a 
MILP model which can be solved to global 
optimality.  

5. EXAMPLES 

5.1 Example 1 

To illustrate the use of the MILP formulation 
presented in the previous section, let us consider 
optimizing the production of five oleoresins, sweet
bay (A), oregano (B), pepper (C), rosemary (D), and
thyme (E) oleoresins, manufactured in a 
multiproduct batch plant.  

This plant consists of the following stages: 1) 
extraction in a four-stage countercurrent arrangement 
(2) expression, (3) evaporation, and (4) blending. All 
of these stages can be duplicated up to four units, so, 
the maximum number of groups that can exist at a 
stage is four, too. 

In order to obtain parameter Fit necessary for Eq. 
(25), the following equations are used: 
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where Ei is the extraction factor, ηi is the extent of 
the extraction, and xi is the product concentration in 
the vegetable solid feed. Index n is the number of 
each stage for the n-staged countercurrent extraction.  

A global horizon time of one year (6000 h working) 
has been considered, and it was divided into a set of 
equal time periods, namely from 1 to 6. Demands, 
costs, and prices differ from period to period. Table 1 
contains some data for this example.  

Table 1 Data for Example 1

 Size Factors (L/kg) Processing Time (h) 
i j1 j2 j3 j4 j1 j2 j3 j4

A 20 15 12 1.5 1.5 1 2.5 0.5 
B 80 55 49 1.5 1.5 1 2 0.5 
C 20 15 12 1.5 2.5 2 3 2 
D 40 25 24 1.5 1.5 1 1.5 1 
E 30 20 17 1.5 1.5 1 3 1 
Sizes (liter, L) SVj = {250, 500, 750, 1000, 1500} 

Table 2 shows the optimal unit assignment for this 
plant. To show the optimal solution, product B, the
least convenient to produce, was chosen. The first 
diagram of Figure 1 shows that raw material for B is 
purchased during the two initial periods. In the 
second diagram, it can be noted that B is produced 
only during the first two periods, because the costs 
are lower mainly due the lower raw material price 
and the amount produced in these periods is stored as 
inventory for satisfying minimum demands in the 
subsequent intervals. 

Figure 1. Results for Product B of Example 1 
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Table 2 Optimal unit assignment for Example 1

 Stage (L) 
Unit j1 j2 j3 j4

k1 1500 1000 750 250 
k2 - - 750 - 

5.2 Example 2 

Consider now the production of 3 oleoresins (A, B, 
C) in 3 time periods where demands take higher 
values in subsequent periods to consider a possible
market expansion. Table 3 shows the optimal unit 
assignment. Table 4 shows the different 
configuration for the units for each product in every 
period, respectively. In this table, units between 
parentheses are included in the same group. Also, it 
can be seen that all units are introduced in period 1 
except units 2 and 3 that are added in stage 1 in 
period 2.  

Table 3 Optimal unit assignment for Example 2

 Stage (L) 
Unit j1 j2 j3 j4

k1 5000 1500 5000 1500 
k2 5000 5000 5000 - 
k3 5000 5000 - - 

These problems were solved by using CPLEX 
through the modeling system GAMS on a Pentium 
IV Processor (3GHz). The total profit for example 1
and example 2 were $1982822.84 and $7766239.71 
respectively. The information about the resolution of 
these examples is as follows. Example 1 has 12091 
constraints, 8293 single variables, 1932 binary 
variables and the optimal solution was obtained after 
a CPU time of 111.70s. Example 2 has 3736 
constraints, 2617 single variables, 636 binary 
variables and the optimal solution was obtained after 
a CPU time of 390.95s.  
Due to the large amount of data for these examples,
they are not presented in this paper. Readers 
interested in the data can contact the authors. 

6. CONCLUSION 

A new model for the optimal design and operation 
planning of multiproduct batch plants has been 
formulated as an MILP problem, which guarantees 
the global optimum solution.  

This multiperiod MILP model involves discrete 
decisions for the structure selection and continuous 
decisions for the operation plan of the plant at each 

time period. Furthermore, this model allows 
considering all possible alternatives for the addition 
of equipments in parallel, which are available in 
discrete sizes. 

Seasonal variations of products demands and raw 
materials availability are readily accounted for, and 
both raw materials and final product inventories are 
included in the formulation. The proposed model 
was applied to a plant that produces oleoresins.  
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Table 4 Arrangement of units for each product in every period

 Period 1 Period 2 Period 3 
 A B C A B C A B C 
qit  2500 500 2000 17000 23000 18000 175000 0 104166 
j1 (k1) (k1) (k1) (k1 ,k3)-(k2) (k1,k2,k3) (k1,k2,k3) (k1,k2,k3)  (k1,k2,k3) 
j2 (k1,k2,k3) (k1,k2,k3) (k1 ,k3)-(k2) (k1,k2,k3) (k1,k2,k3) (k1,k2,k3) (k1,k2,k3)  (k1,k2,k3) 
j3 (k1,k2) (k1)-(k2) (k1,k2) (k1,k2) (k1,k2) (k1,k2) (k1,k2)  (k1,k2) 
j4 (k1) (k1) (k1) (k1) (k1) (k1) (k1)  (k1) 
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