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Abstract: This work presents a set of improved MILP mathematical formulations for the 

scheduling of single-stage batch plants with parallel production lines.  Minimization of 

the average weighted earliness and the makespan, i.e. the time needed to complete all 

processing tasks, are considered as alternative problem goals.  For each objective function 

an enhanced model that incorporates specific tightening constraints is presented.  These 

constraints improve each model’s efficiency by increasing the corresponding objective 

function lower bound, thus accelerating the branch and bound node pruning process.  

Several problem instances with different number of batches demonstrate that the 

proposed approach reduces the computational effort by orders of magnitude.  Sequence 

dependent setup times can also be effectively accommodated.  Copyright © 2006 IFAC 

Keywords: Scheduling algorithms, Optimization, Manufacturing processes, Computer-
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1. INTRODUCTION 

The problem of finding an efficient short-term 

schedule for a multiproduct batch plant is of major 

interest for most manufacturing companies.  Several 

solution methodologies have been proposed  

for different kinds of scheduling problems.  An 

extensive review of the state of the art can be found 

in Floudas and Lin (2004).  Overall, exact solution 

methods have received most of the researchers 

attention.  Among the different MILP models 

proposed in the literature, continuous-time models 

have shown a better computational performance for 

the scheduling of batch processes with sequence-

dependent changeovers.  In particular, the continuous 

time batch scheduling problem model of Méndez et.

al. (2001) shows a good computational behaviour 

compared with other continuous approaches, like the 

time-slot formulation of Pinto and Grossmann (1995) 

or the unit-specific time event model of Ierapetritou 

and Floudas (1998). However, its performance is 

somewhat deteriorated by the big-M batch 

sequencing constraints, especially when the 

makespan objective function is considered.  Big-M 

constraints produce an increase in the integrality gap 

(the difference between optimal values for the 

relaxed and MILP problems), which in turn makes 

the optimal solution harder to find by the MILP 

solver through a branch-and-bound algorithm.   

This work presents a pair of improved formulations 

for single-stage batch plant scheduling problems that 

incorporate tightening constraints in order to reduce 

the integrality gap and enhance the branch-and-

bound node pruning process.  Based on the MILP 

approach by Méndez et. al. (2001), the proposed 

models account for release times, ready times, due 

dates, and sequence dependent setup times between 

batches.  Minimization of the average weighted 

earliness and the makespan, i.e. the time needed to 

execute all processing tasks, are both considered as 

problem objectives.  Specific tightening constraints 

are presented in order to improve the lower bound on 

each objective function, leading to different 

formulations for each problem. 
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This work is organized as follows.  In section 2 the 

scheduling problem under consideration is properly 

defined.  In section 3 the different mathematical 

models are presented.  At first, the single-stage 

version of the MILP model by Méndez et. al. (2001) 

is reviewed.  Common constraints related to 

assignment and sequencing decisions are included.  

Afterwards, specific constraints and binary variables 

that improve the model’s efficiency for each 

objective function are introduced.  These additional 

constraints are incorporated or just replace previous 

ones, and their main purpose is to increase the 

objective function lower bound.  Section 4 shows the 

effectiveness of the proposed approach by tackling 

several problem instances with an increasing number 

of batches and different sequencing conditions for 

both objective functions.  Conclusions are discussed 

in section 5.  

2. PROBLEM STATEMENT 

The problem of short-term scheduling of single-stage 

multiproduct batch plants with parallel production 

lines can be stated as follows.  Given: (a) a single-

stage multiproduct batch plant with multiple parallel 

units j J, (b) a set of single-batch orders i I to be 

completed within the scheduling horizon, (c) the 

order release times rti and due dates ddi for each i I,

(d) the set of available processing units Ji J for each 

batch i, and the constant processing times ptij

required at each unit j Ji, (e) the sequence-

dependent setup times ii'j, (f) the equipment unit 

ready times ruj, and (g) the specified time horizon H.

The problem goal is to find a production schedule 

that completes all batch orders within their time 

limits, meeting assignment and sequencing 

constraints and optimizing a given schedule criterion, 

like the overage weighted earliness or the makespan. 

3. IMPROVED MATHEMATICAL 

FORMULATIONS 

3.1  The MILP approach of Méndez et. al. (2001) 

PROBLEM CONSTRAINTS: 

Assignment of batches to processing units.  A single 

equipment item should be allocated to every batch.  

The binary variable Yij stands for the decision of 

allocating batch i to unit j.

iJj

ijY 1 Ii  (1) 

Batch sequencing.  If two batches i, i' I can be 

assigned to the same processing unit j Ji Ji', then 

sequencing constraints dealing with setup or 

changeover times that prevent from task overlapping 

should be included.  These sequencing decisions are 

handled through fewer binary variables by using the 

general precedence concept. Let the binary variable 

Xii' stand for the relative ordering of batches i,i' I,

where i i', if both batches are assigned to the same 

unit j (Yij Yi'j  1).  Specifically, Xii'  1 if batch i is 

processed before batch i' in the common equipment 

unit j, or Xii'  0 if batch i takes place afterwards.  

Notice that this binary variable becomes meaningless 

if i and i' are assigned to different equipment units.  

jiijiiijijiii YYHXHSsuC ''''' 21

'iiJjIii ,', : 'ii  (2) 

jiijiiiijijii YYHXHSsuC '''' 2

'iiJjIii ,', : 'ii  (3) 

 where:  '' iiii JJJ

Timing of batches. The starting time of batch i can be 

computed from its completion time by subtracting its 

processing time in the assigned unit.  

iJj

ijijii YptCS Ii  (4) 

In addition, the starting time of a batch must be 

higher than either its release time or the sum of both 

the unit ready time and the batch setup time in the 

assigned equipment unit.  

ij

Jj

ijjii YsururtMaxS
i

, Ii  (5) 

OBJECTIVE FUNCTIONS: 

Makespan. The makespan represents how much time 

is required to complete all processing tasks. The 

definition of the makespan variable MK is 

incorporated in the model by the following inequality 

constraint: 

MKCi Ii  (6) 

Thus, the problem goal will be: 

 Minimize  MK (7) 

Average weighted earliness. An alternative problem 

goal is to minimize the average weighted earliness: 

 Minimize  
Ii

iii Cdd
I

1
 (8) 

where the parameter i stands for the weight of the 

earliness of batch i.  Notice that minimizing the 

average or the overall weighted earliness are 

equivalent problems as long as In  is a constant 

parameter. Since due dates are also constant, this 

objective function involves maximizing the average 

completion time of the batches.  

The previous objective function will be useful only if 

the completion time of each batch never exceeds its 

specified due date. 

ii ddC Ii  (9) 
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3.2 Tightening the Makespan lower bound 

A simple analysis of the above equations (2)-(6) 

leads to the following conclusions:  The makespan 

lower bound is defined as the maximum completion 

time of any batch by constraint (6).  At the same 

time, constraint (4) defines the completion time of 

each batch based on its processing time and start 

time.  Therefore, it can be expected that the optimal 

solution will minimize processing times and start 

times simultaneously, at least for the last batch 

completed, since both (4) and (5) depend on the 

unique processing unit allocated by (1).  If the 

equipment availability is much higher than the batch 

requirements (i.e. more equipment units than batches 

to schedule are available), the above constraints will 

lower bound the objective function and the MILP 

solver will easily choose the best possible 

assignment solution.   

Unfortunately, this is not the ordinary situation.  In 

general, several batches will be allocated to each 

processing unit and the sequencing equations (2) and 

(3) will need to be taken into account.  Since these 

constraints are of big-M type, they do not provide a 

good lower bound estimation on the objective 

function.  Even if the assignment variables Yij and Yi'j

were set to 1 for a given equipment j, the sequencing 

variable Xii' can take a fractional value during the 

branch-and-bound search causing that neither 

equation (2) nor (3) have any effect on the starting or 

completion times of the batches.   

However, assignment variables partially or 

completely allocating units to batches, i.e. equal to 1 

or a positive fractional value, constitute a valuable 

information to estimate a tight lower bound for the 

makespan.  Usually, the processing time of a task is 

frequently larger than its setup time (either sequence 

dependent or independent).  Based on this 

assumption, the overall workload assigned to each 

equipment unit can be estimated using the 

summation of processing times of all the tasks 

allocated to it.  When sequence independent setup 

times are considered, they can be included in the 

summation, which happens to be a good estimation 

for the schedule makespan:  

MKYptsuru
jIi

ijijijj Jj  (10) 

Notice that constraint (10) determines a lower bound 

for the makespan based on the total processing time 

at each unit, whatever is the sequence of tasks 

selected.  Consequently, the summation term is a 

valid estimation for the makespan, based only on 

assignment variables.  Sequencing decisions neither 

appear in this equation nor influence its tightening 

effect.

If, instead, sequence dependent setup times are 

significant, they can still be included in the previous 

equation very easily.  The summation in constraint 

(11) now includes the lowest possible sequence 

dependent setup for each batch, as defined by 

equation (12).  Since Min
ij  is included for every batch 

allocated on the processing unit, and the first batch to 

be processed does not need any prior setup, the 

highest possible sequence dependent setup is 

subtracted in order to ensure optimality: 

MKYptsuMaxru
j

j
Ii

ijijij
Min
ij

Min
ij

Ii
j

Jj  (11) 

 where: 

iji
iiIi

Min
ij

j

Min '
':'

iJjIi ,  (12) 

Constraint (11) provides a good lower bound on the 

value of MK because the model will try to optimise 

the batch sequencing at each unit in order to 

minimize the setup times.  However, only if setup 

times between batches at the same unit are of similar 

order of magnitude this inclusion will be useful as a 

tight estimation. If 0Min
ij  for a given batch, no 

improvement on the lower bound is possible.   

Although the above estimations are rather 

straightforward, they are quite useful to get a good 

lower bound estimation on the makespan using a 

formulation that allows sequence dependent setup 

times.  It is desirable to also get simple estimations 

for other objective functions.   

3.3 Tightening the lower bound on the Average 

Earliness

As mentioned before, the objective function defined 

by (8) maximizes the summation of batch completion 

times.  In turn, constraint (9) gives an upper bound 

on the completion time of each batch, also defining a 

preliminary lower bound on the value of this 

objective function.  Neither (4) nor (5) have any 

influence on it.  Since start times are not primarily 

affected by the objective function, there is no direct 

model trend to choose any particular equipment unit 

for a given batch. In the makespan case it was likely 

to choose an equipment with minimum processing 

time.  Thus, for a given batch i I allocated to unit

j Ji, it is clear that its completion time will not be 

deteriorated unless another batch i' is assigned to the 

same processing unit.  But, as mentioned before, 

sequencing decisions must be made in order to 

change start or completion times, and these decisions 

are defined by constraints (2) and (3), which are of 

big-M type.  Since changes on the objective function 

value during the branch-and-bound process depend 

on the relative ordering of the batches allocated to 

the same processing unit, and because batches are not 

assumed to be previously assigned to any equipment 

unit, estimating a lower bound on the average 

earliness will be a more complex task than before. 

Nonetheless, valid estimations of batch earliness can 

still be inferred.  Let us suppose that two processing 

tasks i and i' are both allocated to the same unit j with 

batch i preceding i' (i.e., Yij Yi'j  1 and Xii'  1 if 
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i i').  Therefore, let us define the parameter ii'j to 

estimate the earliness deterioration caused by batch i'

over batch i if both are allocated to the same unit j,
and batch i is executed before i'.  Notice that the 

latest start time (LST) of batch i' will be an upper 

bound on the completion time of batch i.  Figure 1 

shows three possible scenarios for the temporal 

relation between due dates and processing times of 

both batches.  In Figure 1(a), batch i' is due before 

batch i.  Since it was assumed that i precedes i', the 

completion time of batch i must be deteriorated by at 

least the sum of the processing time and the setup 

time of i'.  Alternatively, if batch i' is due after batch 

i, the completion time of batch i will be bounded by 

the difference shown in Figure 1(b), only if such a 

difference is positive. Otherwise, the estimation will 

be null as in Figure 1(c).  Therefore, the earliness of 

batch i is deteriorated for each batch i' executed on 

unit j after i by the amount ii'j.  Summing up these 

individual deteriorations, it is possible to estimate a 

lower bound on the earliness of each batch i, as will 

be next shown. 

To derive the proposed estimation, a different set of 

sequencing binary variables must be defined:  

1 if batch i is processed before 

batch i' on unit j 
jii'

0 otherwise

'iiJjIii ,', : 'ii

Since these binary variables are defined for every 

possible permutation of two distinct batches, and for 

each eligible equipment unit for both batches, an 

immediate conclusion is that this new approach will 

significantly increase the number of decision 

variables.  With the model of Méndez et. al. (2001),

a smaller set of sequencing variables is required 

because sequencing and assignment decisions were 

independent.  Variable Xii' do not includes index j

and is defined for every ordered pair of batches 

i, i' I, such that i i'.  As the number of variables ii'j

is larger, it can be expected that the computational 

performance will not improve.  However, as it will 

be shown, this is not true since a better lower bound 

for the objective function and, consequently, a lower 

CPU requirement is achieved. 

Constraints (13) and (14) replace constraints (2) and 

(3) for the proposed relationships among sequencing 

decisions:  

ijijiijiij YY ''' 1

'iiJjIii ,', : 'ii  (13) 

''

'''''

iiii Jj

jiii

Jj

jijijiii HSYsuC 1

Iii ', : 'ii  (14) 

Constraint (13) produces that either ii'j or i'ij are 

set to 1 if batches i and i' are both allocated to unit j.

(a)

(b)

(c)

Fig. 1. Earliness deterioration caused by batch i' over 

batch i if both are allocated to the same unit j.

This constraint relates model's assignment decisions 

and model's sequencing decisions, which is the main 

difference with the previous approach.  In turn, 

constraint (14) has the same effect that constraints (2) 

and (3), but here a summation over the available 

equipment units reduces the number of constraints by 

one order of magnitude. 

Finally, the proposed constraint to tighten the lower 

bound on the overall earliness objective function is: 

i

iiIi Jj

jiijiii ddC
ii':'

''

'

Ii  (15) 

Here constraint (15) replaces previous constraint (6), 

where ii'j is the earliness estimation parameter 

defined as: 

jiji
Min

ji ptsu ''' if   ddi'  ddi

'''' ijiji
Min

jii ddptsudd

if   (ddi  ddi') and

(ddi' - i'j
Min - sui'j - pti'j  ddi)

jii'

0 otherwise (16)

Constraint (15) causes that the upper bounds on the 

completion times are affected by the assignment 

decisions while batch-unit allocations are made.  To 

reach this conclusion it is necessary to understand 

how constraints (13) and (15) work together.  

Constraint (13) assures that, once a batch i is

assigned to equipment j (Yij  1), any other batch i'

assigned or partially assigned to the same unit (0 

Yi'j  1) will automatically increase binaries variables 

ii'j or i'ij.  Since these sequencing variables appear 

on the summation of constraint (15), it is expected 

that a variable i'ij related to the ordered pair (i, i') on 
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unit j and featuring a lower ii'j will take a nonzero 

value.  Therefore, the lowest possible deterioration of 

both completion times will be chosen.  

Tightening constraint (15) will have no effect until 

assignment decisions are at least partially made.  If 

two batches have the same or almost the same due 

date, it is expected that both ii'j and i'ij will be 

nonzero.  In this case, if i is already allocated to unit j

(Yij  1), the optimal relaxed solution will avoid the 

assignment of i' to the same unit j, if a deterioration 

of the earliness of one of the batches will happen.  In 

this way, the model will avoid the assignment of new 

tasks to a unit if it is overloaded.  In general, the 

lower bound proposed on the value of the objective 

function is useful during the node pruning process 

whenever 1 Yij+Yi'j  2, and consequently, i and/or

i' are assigned or partially assigned to the same 

processing unit j.

4. COMPUTATIONAL RESULTS 

The effectiveness of the above tightening constraints 

will be illustrated by finding the minimum-makespan 

(Example 1) and the minimum-earliness (Example 2) 

schedules for a single-stage multiproduct batch plant.  

Both sequence dependent and independent 

changeovers are considered, since sequence 

dependent setups have a significant influence on the 

model performance and they cannot be efficiently 

considered with other formulations.  

The problem to be tackled involves a plastic 

compounding plant with a single stage and four 

extruders running in parallel.  This problem was first 

studied by Pinto and Grossmann (1995) and 

Ierapetritou, Hené, and Floudas (1999) with up to 29 

batch orders.  Méndez and Cerdá (2003) expanded  

Table 1. Product families

Family Batches 

F1 O1, O2, O3, O5, O10, O16, O20, O22

F2 O4, O8, O9, O14, O18, O26, O31

F3 O7, O23, O24, O30, O33, O34, O36, O37, O38, O40

F4 O6, O11, O15, O17, O19, O32, O35

F5 O12, O13, O21, O25, O27, O28, O29, O39

Table 2. Sequence dependent setup times 

between families 

F1 F2 F3 F4 F5

F1 0.104 0.127 0.178 0.192 0.217 

F2 0.122 0.115 0.266 0.229 0.291 

F3 0.191 0.214 0.175 0.304 0.424 

F4 0.350 0.205 0.328 0.184 0.400 

F5 0.357 0.423 0.348 0.284 0.205 

the number of batches to 40, in order to undertake an 

appropriate dynamic scheduling scenario.  Order due 

dates and unit-dependent processing and setup times 

used on this section can be found in Méndez and 

Cerdá (2003).  

In order to address sequence dependent changeovers, 

batch orders are grouped into five product families 

F1-F5 as shown in Table 1, and sequence-dependent 

setup times between families are listed in Table 2.  

Hence, two versions of Examples 1 and 2 have  

been studied, one assuming sequence-independent 

changeovers and the other considering changeovers 

as sequence dependent.  Both versions were solved 

using the approach of Méndez et. al. (2001) and the 

corresponding improved formulation, for an 

increasing number of batches ranging form 12 to 

25/40, in order to reach the computational limit of 

each model. 

Table 3. Makespan minimization results with the model of Méndez et. al. (2001)

Sequence independent setup times Sequence dependent setup times 

n

Binary vars, 

Continuous vars, 

Constraints
 Objective 

Function

Relative

Gap (%)

CPU time 
(sec.)

Nodes
Objective

Function

Relative

Gap (%)

CPU time 
(sec.)

Nodes

12 82, 25, 214  8.428 - 19.03 94365 8.645 - 8.36 39350 

16 140, 33, 382  12.353 2.43 >3600 8893218 12.854 - 1188.50 3421982 

18 161, 37, 444  13.985 - 2872.81 7166701 14.633 27.07 >3600 8708577 

20 201, 41, 558  15.268 22.62 >3600 6282059 15.998 21.95 >3600 6570231 

Table 4. Makespan minimization results with the proposed model

Sequence independent setup times Sequence dependent setup times 

n

Binary vars, 

Continuous vars, 

Constraints
 Objective 

Function

Relative

Gap (%)

CPU time 
(sec.)

Nodes
Objective

Function

Relative

Gap (%)

CPU time 
(sec.)

Nodes

12 82, 25, 218  8.428 - 0.05 12 8.645 - 0.05 15 

16 140, 33, 386  12.353 - 0.03 1 12.854 - 0.09 44 

18 161, 37, 448  13.985 - 0.11 27 14.611 - 40.36 116413 

20 201, 41, 562  15.268 - 0.14 21 15.998 - 183.56 417067 

22 228, 45, 622  15.794 - 0.20 49 16.396 - 167.09 359804 

25 286, 51, 792  18.218 - 0.42 110 19.064 * - 79.25 109259 

29 382, 59, 1064  23.302 - 0.61 82 24.723 * - 5.92 5385 

35 532, 71, 1430  26.683 - 0.97 90     

40 625, 81, 1656  28.250 - 0.91 34     

 * For a Relative Gap Tolerance of 0.01 
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Table 5. Overall earliness minimization results with the model of Méndez et. al. (2001)

Sequence independent setup times Sequence dependent setup times 

n

Binary vars, 

Continuous vars, 

Constraints
 Objective 

Function

Relative

Gap (%)

CPU time 
(sec.)

Nodes
Objective

Function

Relative

Gap (%)

CPU time 
(sec.)

Nodes

12 82, 24, 214  1.026 - 0.03 22 1.376 - 0.01 12 

16 140, 32, 382  9.204 - 1.30 3668 11.647 - 2.70 8301 

18 161, 36, 444  16.496 - 38.48 84843 18.773 - 55.77 123666 

20 201, 40, 558  17.073 - 77.78 148101 19.131 - 81.38 159388 

22 228, 44, 618  22.815 1.68 >3600 4385294 27.754 8.33 >3600 3616973 

25 286, 50, 788  29.430 49.63 >3600 2720801 40.541 57.68 >3600 3435213 

Table 6. Overall earliness minimization results with the proposed model

Sequence independent setup times Sequence dependent setup times 

n

Binary vars, 

Continuous vars, 

Constraints
 Objective 

Function

Relative

Gap (%)

CPU time 
(sec.)

Nodes
Objective

Function

Relative

Gap (%)

CPU time 
(sec.)

Nodes

12 191, 24, 245  1.026 - 0.02 1 1.376 - 0.03 1 

16 351, 32, 437  9.204 - 0.30 78 11.647 - 0.56 404 

18 408, 36, 508  16.496 - 1.19 785 18.773 - 1.20 853 

20 519, 40, 639  17.073 - 1.63 807 19.131 - 3.27 2178 

22 574, 44, 721  22.815 - 9.11 6598 27.754 - 90.75 75569 

25 738, 50, 916  29.430 - 91.14 57741 37.216 15.25 >3600 2006319 

All results were found on a Pentium IV PC (2.8 

GHz) with ILOG OPL Studio 3.7, using the 

embedded CPLEX v. 9.0 mixed-integer optimizer.  

CPU time limit was defined on 1 hr.  Except for the 

two cases indicated in Table 4, the solver default 

relative gap tolerance equal to 0.0001 was used.  The 

time horizon limit H  30 was used as the big-M 

parameter.  

The results for the makespan minimization problem 

(Example 1) are shown in Table 3 for the model of 

Mendez et. al. (2001), and in Table 4 for the 

improved formulation.  The proposed model is 

always faster for each problem instance being 

tackled.  For sequence independent problems, 40 

batches are scheduled in less than a second.  For 

sequence-dependent problems almost optimal 

solutions are found in few CPU seconds, since the 

relative gap decreases significantly faster because of 

the tightening constraints.   

For Example 2 the corresponding results are shown 

in Tables 5 and 6.  Direct comparison for the 20 

batches problem shows an improvement on the 

computational time of 47:1 for the sequence 

dependent and of 24:1 for the sequence independent 

cases.  Since tightening constraints for this example 

do not have a notorious effect until assignments are 

made, the lower bound for the proposed formulation 

increases slower than before.

For both examples, the model of Méndez et. al. 

(2001) reaches good (most optimal) solutions in few 

seconds, but needs larger computational effort to 

prove their optimality, since the lower bound on the 

value of the objective function increases very slowly. 

5. CONCLUSIONS

A pair of improved MILP formulations for single-

stage batch scheduling problems that efficiently 

handle sequence dependent setup times has been 

proposed.  Better computational results are achieved 

by incorporating tightening constraints that increase 

the lower bound on the objective function value.  

Problems of up to 40 batches have been solved in a 

very low CPU time.   
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