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Abstract: This paper presents an algorithm to solve non-convex NLP and MINLP problems 

using CLP.  In the proposed technique, the continuous variables are relaxed to take only 

integer values contained in the real domain of the variable. The merits of the CLP algorithm, 

viz powerful CP strategies are proposed to be exploited to get integer solutions to the 

relaxations. A lower bound to the objective function is obtained if the relaxed problem is 

feasible. This information is used in the successive stages wherein the continuous variables 

are corrected from their integer variable representation to obtain real solutions with desired 

accuracy. The proposed technique has been successfully demonstrated on two MILP, two non 

convex NLP and two non convex MINLP problems. The problems were also solved by 

traditional techniques and the superiority of the proposed method has been demonstrated. 

Keywords: Constraint Logic Programming (CLP), Constraint Propagation (CP), Integer 

Programming (IP) Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear 

Programming (MINLP)  

1. INTRODUCTION 

Many of the problems arising in synthesis and 

design, and in planning and scheduling problems are 

MINLP models. This is due to the fact that MINLP 

provides much greater modeling flexibility for 

tackling a large variety of problems. While MILP 

methods have been largely developed outside process 

systems engineering, chemical engineers have played 

a prominent role in the development of MINLP 

methods. Some of the methods used to solve MINLP 

include Branch and Bound, Generalized Benders 

Decomposition (GBD), Outer Approximation (OA) 

and Extended Cutting Plane methods (ECP). In the 

above methods, the objective function and the 

constraints are assumed to be convex and 

differentiable. But, often times, some problems lead 

to formulations that do not satisfy these requirements 

of convexities. The trim loss problem in paper 

industry and the 10P3S problem (Munawar & Gudi, 

2005) are some such problems. Ryoo and Sahinidis 

(1995) have reported a collection of twenty one non 

convex problems that arise in process synthesis.  

There have been a number of attempts to handle non 

convex MINLPs. Tawarmalani and Sahinidis (2000) 

have developed a branch and bound method that 

branches on the continuous and discrete variables. 

This method, which relies on bounds reduction using 

underestimators, has been implemented in BARON. 

The SMIN- BB and GMIN- BB algorithms have 

been developed for twice-differentiable nonconvex 

MINLPs. The BB method, which is a branch and 

bound procedure that branches on both the 

continuous and discrete variables according to 

specific options, was developed by using a valid 

convex underestimation of general functions as well 

as special functions. The branch-and-contract method 

for global optimization of process models which 

have bilinear, linear fractional and concave separable 

functions in the continuous variables and linear 0–1 

variables, uses bound contraction and applies the 

outer-approximation algorithm at each node of the 

tree for the spatial search. Lee and Grossmann (2001) 

developed a two level-branch and bound method for 

solving nonconvex disjunctive programming 

problems. Munawar & Gudi (2005) have proposed a 

hybrid technique to solve MINLP that makes use of 

Differential Evolution (DE) and Non Linear 

Programming (NLP). 

Finding its roots in computer science and artificial 

intelligence communities, Constraint Programming 

(Puget, 1994; Van Hentenryck, 1989) is an 

alternative approach to discrete and continuous 

problem solving. For decades, it has proved 
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successful in several applications, particularly in 

scheduling and logistics. Unlike mathematical 

programming, it does not use relaxations but it relies 

on methods of logical inference (primarily domain 

reduction and constraint-propagation) to reduce the 

domain of possible values for a discrete or 

continuous variable. The rich modeling language of 

CLP has contributed in a large way towards its 

success.

The methods described above for the solution of non 

convex MINLP essentially involve the Branch and 

Bound and Extended Cutting Plane methods. The 

successes of these methods are crucially dependent 

on the successful solution of the NLP sub-problems 

at each node. On the other hand, CLP methods are 

good at domain propagation but are restricted to the 

finite domain and do not handle continuous 

variables. In recent years, there has been substantial 

progress in the development of powerful constraint 

propagation engines, which could be exploited 

towards solution of problems represented in the finite 

domain. An alternative approach to solving MINLPs 

that relies on the use of CLP towards domain 

reduction could therefore be examined towards 

solution of such non-convex MINLP problems.  

In this paper, a method has been proposed that uses 

CLP to solve non-convex MINLP problems. 

Contrary to the regular approach of relaxing on the 

integrality requirements as in the branch and bound 

algorithm, the proposed approach relaxes the 

continuous variables to discrete values. Since 

constraint propagation approaches are usually more 

suitable in the finite domain over other integer 

programming methods (Smith, et al., 1997), we 

propose to use the powerful features of constraint 

propagation engine to reduce the finite domain space.  

The method involves solving a master problem 

obtained by relaxing the space of continuous 

variables to integer domain. If the relaxed problem is 

feasible, it ensures that a lower bound (for the 

maximization problem) is obtained for the problem. 

Also, the domain reduction inherently present in CP 

helps to specify tighter bounds on the continuous 

variables. These steps are followed by the solution of 

another sub problem in which the continuous 

variables are corrected from their integer variable 

representation to obtain real solutions with desired 

accuracy. In this sub problem, the bounds on the 

continuous variables are also tightened by inferring 

from the solution of the master problem. If the 

master problem is infeasible, the original problem 

itself is discretized and solved.  

The remainder of the paper is organized as follows. 

The following section gives a review of CLP 

technique. Section 3 focuses on some theoretical 

aspects of CP relevant to the real domain. Section 4 

discusses the results obtained by applying the 

proposed methodology on two MILP and two non 

convex NLP and MINLP problems. The second 

MILP problem is a planning and scheduling problem 

on a set of dissimilar parallel machines (Jain and 

Grossman, 2001). We solve this problem using CLP 

even when the start times, due dates, release dates 

and processing times are not integer parameters. This 

is particularly noteworthy considering the fact that 

ILOG Scheduler does not support continuous 

variables.  

2. CONSTRAINT LOGIC PROGRAMMING  

Constraint Programming (Hentenryck, 1989; Hooker, 

2000) was originally developed to solve feasibility 

problems, but it has been extended to solve 

optimization problems as well. In finite domain CLP, 

each integer variable xi has an associated domain Di

which is the set of possible values that this variable 

can take on in the optimal solution. The cartesian 

product of the domains D1 x…..x Dn forms the 

solution space of the problem. This space is finite 

and can be searched exhaustively for a feasible or 

optimal solution, but to intelligently enumerate this 

search, CP is used to infer infeasible solutions and 

prune the corresponding domains. From this 

viewpoint, CP operates on, and narrows down, the 

set of possible solutions. 

Constraint Programming is based on performing a 

tree enumeration. At each node the domains of the 

variables, which can be continuous, general integer, 

boolean and binary are reduced.  If an empty domain 

is found the domain is pruned. Branching is 

performed whenever a domain of an integer, binary 

or boolean variable has more than one element, or 

when the bounds of the domain of a continuous 

variable do not lie within a tolerance. Whenever a 

solution is found, or a domain of a variable is 

reduced, new constraints are added to ensure that the 

node is not revisited. The search terminates when no 

further nodes need to be examined. 

Traditional IP methods are very efficient for 

problems with good relaxations but suffer when the 

relaxation is weak or when its restricted modeling 

(linear inequalities) framework results in large 

models. CLP with its more expressive language  

results in smaller models that are closer to the 

problem description, and performs better for highly 

constrained problems; however, it lacks the global 

perspective of relaxations. 

There have been a few attempts to integrate CLP and 

MILP so that their complementary strengths can be 

exploited. Some examples include the modified 

generalized assignment problem (Darby et al., 1997), 

the template design problem, the progressive party 

problem (Smith et al., 1997), and the change problem 

(Heipcke, 1999). These papers showed that MILP is 

very efficient when the relaxation is tight and the 

models have a structure that can be effectively 

exploited. CP works better for highly constrained 

discrete optimization problems where expressiveness 

of MILP is a major limitation. Hooker (2000) deals 

with the subject of MILP and CP integration in 

detail. Jain and Grossman (2001) have shown a 

decomposition method wherein a master MILP and a 

CLP subproblem work in cooperation and are able to 

address problems, that were otherwise intractable by 

both the methods.  
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3. DECOMPOSITION METHODOLOGY

The algorithms proposed in this section have been 

motivated by the high efficiency of CLP in reducing 

the domain of variables. A motivating example has 

also been presented at the end of the section. 

Although shown for an MINLP, this theory is also 

valid for solution of an MILP.  

Consider a problem, which when modeled as an 

MINLP has the following structure, 

(M1) ,max ,x y f x y    (1) 

( , )s.t G x y    (2) 

x     (3) 

0,1y    (4) 

where G(x,y) could represent both equality and 

inequality constraints. The above optimization 

problem has both continuous and binary variables. It 

is to be noted no restrictions are placed on (1) and (2) 

to be convex and linear in the discrete variables.  

The master problem of (M1) is given by 

 (M2) ,max ,x y f x y    (5) 

( , )s.t G x y    (6) 

x     (7) 

0,1y    (8) 

Any solution obtained for M2 will provide a lower 

bound for the problem M1. In other words, M1 will 

never have a value that is lower than M2. Let f , the 

solution to M2, define this lower bound.

The sub problem (M3) is defined as 

(M3) ,max ,x y f x y    (9) 

( , )s.t G x y    (10) 

                 f f                                           (11) 

0

10 ( _ )
n

i

i

i

x a x   (12) 

              0,1y                                           (13) 

              0 _a x                                          (14) 

          _ 0,1, 2,3....9 0ia x i             (15) 

The domain  can be inferred from the solution of 

M2. For a maximization (minimization) problem, the 

lower (upper) bound of x will start from (end at) the 

solution of x in M2. The upper (lower) bound will 

essentially remain the same as in M2.  

The sub-problem (M4) is defined as 

(M4) ,max ,x y f x y    (16) 

( , )s.t G x y    (17)

0

10 ( _ )
n

i

i

i

x a x   (18) 

              0,1y                                           (19) 

              0 _a x                                          (20) 

          _ 0,1, 2,3....9 0ia x i             (21) 

This problem is solved if and only if M1 gives an 

infeasible solution. The domain in equation (20) is 

larger than (14) because no inference can be made 

from the solution of M1 and M4 is a larger problem 

than M3. It should be noted that M4 can be solved 

for an optimal solution even without solving M2. 

Table 1: Proposed Algorithm to solve MILP/MINLP 

problems

Algorithm 

Step 1: Formulate M2 by relaxing the continuous 

variable space of M1 to Integer space 

Step 2: Solve M2 using CLP.  

If M2 is feasible, 

 go to Step 5  

Step 3: Formulate M4 by discretizing M1 using (17) 

subject to (19) and (20) 

Step 4: Solve M4.  

If feasible,  

Solution is Optimal for M1 

 else  

M1 is Infeasible 

Step 5: Formulate M3 by discretizing M2 using (11) 

subject to (13) and (14) 

Step 6: Solve M3 to obtain optimal of M1  

4. CASE STUDIES 

This section discusses the application of the proposed 

methodology on some MILP, NLP and non-convex 

MINLP problems.  

4.1 Case Study 1 

The example discussed is an MILP with 3 

continuous and 3 binary variables and will be 

hereon referred as Case Study 1. 

(M1)    

, 1 2 3 1 2 3

1 2 3

3 1

2 1

1 2 3

1

3

. 151.2

2

70

2

5.9

5,0,0 (100,100,100); 0,1

x yMin f x x x y y y

s t x x x

x x

x x

y y y

x

X Y

The formulation of model (M2) is done by relaxing 

the continuous spaces of x to integer space. 

(M2)

, 1 2 3 1 2 3

1 2 3

3 1

2 1

1 2 3

1 2 3

3

1

. 151.2

2

70

2

5.9 , 0,1,2...,100 ;

5,6...,100 ; 0,1

x yMin f x x x y y y

st x x x

x x

x x

y y y

x x x

x Y

The optimal solution for (M2) is 
* * * * * * *

1 2 3 1 2 3, , , , , ;x x x y y y f = 6,76,69,0,1,1 ;13 . 

This solution gives us a bound on the objective 

function i.e., the objective function of (M1) can 

never be greater than 13.

The model (M3) is formulated by inferring tighter 

bounds from the solution of (M2) 
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(M3)

, 1 2 3 1 2 3

1 2 3

3 1

2 1

1 2 3

3

1

0 1 0 2

0 3

1 1 2 1 1 2

2 2 1 3 2 3

1 1 1 2 1 3 1

. 151.2

2

70

2

5.9; 0,1

_ 5,6 ; _ 0,1,...76 ;

_ 0,1,..69

_ , _ , _ ,
0,1, 2...9

_ , _ , _

_ 0.1 _ 0.01 _

x yMin f x x x y y y

s t x x x

x x

x x

y y y

x Y

a x a x

a x

a x a x a x

a x a x a x

where x a x a x a x

2 1 2 2 2 3 2

3 1 3 2 3 3 3

_ 0.1 _ 0.01 _

_ 0.1 _ 0.01 _

x a x a x a x

x a x a x a x

The optimal solution for (M3) is * * * * *

1 2 3 1 2( , , , , ,x x x y y
* *

3 ; ) 5.95,75.95,69.3,0,1,1 ;12.6 is y f

The formulation for model M4 is given by 

(M4)

, 1 2 3 1 2 3

1 2 3

3 1

2 1

1 2 3

3

1

0 1

0 2

0 3

. 151.2

2

70

2

5.9; 0,1

_ 5,6,..,100

_ 0,1,...100

_ 0,1,..100

x yMin f x x x y y y

s t x x x

x x

x x

y y y

x Y

a x

a x

a x

   

Though the master problem was feasible, 

nevertheless, M4 can be formulated and solved for 

this case study. But as said earlier, it is more 

computationally expensive. This fact is 

substantiated by the Table 2.  

Table 2: CLP Parameters for Case Study 1

Model No. of 

Choice

Points 

No. of 

Failures 

M2 3 64 Method 1  

M3 13 53 

Method 2   M4 27 128 

4.2 Case Study 2 

The following planning and scheduling MILP 

model has been taken from Jain and Grossman 

(2001). The scheduling problem involves finding a 

least-cost schedule to process a set of orders I
using a set of dissimilar parallel machines M .

Processing of an order i I  can only begin after 

the release date ir  and must be completed at the 

latest by the due date id . Order i  can be processed 

on any of the machines. The processing cost and 

the processing time of order i I  on machine 

m M  are imC  and imp , respectively.

min

s.t ; 1

max min

1 , , ,

1 , ,

1 , ,

im im

i I m M

i i im

m M

i i im im

m M

im im i i i i

i I

ii i i im i m

i i im im ii

m M

ii i i

ii i i im

C x

ts r i I x i I

ts d p x i I

p x d r

y y x x i i I i i m M

ts ts p x U y i i I i i

y y i i I i i

y y x 2 , ,

, ,

0 ; 0,1 ,

0,1 , , ; max

i m

i im

ii im
m M

i I

x i i I i i

m m M m m

ts x i I m M

y i i I i i U p

The main decisions involved in this scheduling 

problem are assignment of orders on machines, 

sequence of orders on each machine, and start time 

for all the orders. The binary variable imx  is an 

assignment variable, and it is equal to one when 

order i  is assigned to machine m . Binary variable 

iiy  is the sequencing variable, and it is equal to 

one when both i  and i  are assigned to the same 

machine and order i  is processed after order i .

The continuous variable its  denotes the start time 

of order i .

Table 3: Data for Case Study – 2

Cost
Processing 

time
Order

Mch 

1

Mch

 2 

Mch 

1

Mch 

 2 

Release 

date

Due

date

1 10.6 6.25 10.2 14.5 2.1 16.9 

2 8.26 5.45 6.25 8.10 3.5 14.2 

3 12.47 7.06 11.98 16.14 4.8 25.5 

Table 4: Results for Case Study – 2

Order Machine
Start  

Time

Processing 

Time
Finish

1 2 2.1 14.5 16.6 

2 1 3.5 6.25 9.75 

3 1 9.75 11.98 21.73 

Jain and Grossman (2001) have discussed 10 

instances of this problem. They have formulated 

the same problem as a CLP model to be 

compatible with ILOG Scheduler. The processing 

times are assumed to be integers in their 

formulation. In our work, we allow these 

parameters to be real and test the ILOG Solver’s 
capability to accommodate this change using our 
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formulation. Table 3 shows the scheduling data of 

3 orders on 2 machines. 

For this problem, the master problem M2 was 

infeasible and hence M4 was solved using CLP. 

Table 4 shows the results of this case study. The 

results were equivalent to those obtained when M1 

was solved using a MILP solver such as CPLEX.  

4.3 Case Study 3 

The following is a pooling NLP problem that has 

been studied extensively in the literature (Ryoo and 

Sahinidis, 1995). 

, 5 9 1 2 6

1 2 3 4 3 7 5

4 8 9 7 8 6

10 3 7 5 10 4 8 9

1 2 10 3 4

min 9 15 6 16 10

. ;

;

2 2.5 ; 2 1.5

3 ;

0,0,0,0,0,0,0,0,0,1 (300,300,100,

200,100,300,100, 200, 200,3)

x y x x x x x

s t x x x x x x x

x x x x x x

x x x x x x x x

x x x x x

X

The proposed CLP based strategy reaches the 

global optimum without getting stuck at any of the 

infinite local solutions (Ryoo and Sahinidis, 1995). 

The global optimum is given by 
* * * * * * * * * *

1 2 3 4 5 6 7 8 9 10, , , , , , , , ,x x x x x x x x x x (0,100,0,100,

0,100,0,100, 200,1) .

The above problem when solved using the NLP 

solver CONOPT was dependent on initial guesses 
and has the possibility of converging at local 

optima. 

4.4 Case Study 4 

The following non convex NLP has been taken 

again from Ryoo and Sahinidis (1995) 

, 1 2

2 2 2 2

1 2 1 2

1 2 2 1

min

. 4; 1;

1; 1

2 2

x y x x

s t x x x x

x x x x

X

The solution of this problem with GAMS modeler 

and CONOPT as solver did not give satisfactory 

results and it was found that the global optima 

reported was dependent on the initial guess 

provided. The global optima for this problem using 

the proposed CLP approach agreed with the 

reported value 1.414214, 1.414214X

and 2.828427f .

4.5 Case Study 5 
The following problem is a MINLP with one 

binary and one continuous variable. This problem 

was proposed by Kocis and Grossmann (1988), and 

was also solved by Floudas et al. (1989), Ryoo and 

Sahinidis (1995) and Cardoso et al. (1997). 

,

2

min 2

. 1.25 0

1.6

0 1.6

0,1

x y f x y

s t x y

x y

x

y

The first nonlinear inequality constraint contains a 

non-convex term for the continuous variable x. The 

global optimum is (x, y; f) = (0.5, 1; 2).The master 

(M2) problem of this case study is infeasible and 

hence this problem was successfully solved to 

global optimality using the M4 transformation. 

Munawar and Gudi (2005) have solved this 

problem using GAMS Solvers viz. CONOPT2 and 

SNOPT. It has been shown that the optimum is 

strongly dependent on initial guesses. Such 

problems are not encountered when the above non-

convex MINLP is solved using the proposed 

approach M4. 

4.6 Case Study 6 

The following problem is a non convex MINLP 

problem with three continuous and two discrete 

variables.  
2 2 2 2 2

, 1 1 1 1 1 2 1 2 2 1 1 3

1 2 1 1 1

2 2 1 2

1 2 3 3

1 2

1 2 3

3

max

. 10 ; 1

1 ; 1

1 ; 1 0

3.5 ; 15.5

0 4; 0 16; 0 1;

0,1

x y x y x y x x y y y x y x

s t x x y x y

x y y y

y y x x

x x

x x x

Y

Unlike in case study 3, this problem has a feasible 

solution for the master problem and is found to be  
* * * * * *

1 2 3 1 2, , , , ; 3,15,1,1,0 ;69x x x y y f .

This implies that the objective function cannot be 

less than 69. The sub-problem (M3) is solved and 

the global optima is determined to be 
* * * * * *

1 2 3 1 2, , , , ; 3.5,15.5,1,1,0; 85.25,x x x y y f .

This problem was also solved using M4. Though 

the global optimum was obtained, it was at a higher 
computational effort, as we report in Table 5.  

Table 5: CLP Parameters for Case Study 6 

Model No. of 

Choice 

Points

No. of  

Failures 

M2 0 26 Method 1  

M3 31 537 

Method 2    M4 271 3735 

This problem was also solved using the GAMS 
modeler with the DICOPT Solver. As can be seen 

in Table 6, solution using DICOPT is dependent on 

the initial guess to reach the global optimum. But 
in the proposed algorithm, there is no need for any 

initial guesses and yet the solutions are guaranteed 

to be globally optimal. 
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   Table 6: Results for Case Study 6 using (DICOPT)

Initial Guesses 
0 0 0 0 0 0

1 2 3 1 2, , , , ;x x x y y f

Optima 
* * * * * *

1 2 3 1 2, , , , ;x x x y y f

No initial Guess 3.5,15.5,0,1,0; 84.25

3.5,15.5,0,0,1; 80, 3.5,15.5,0,1,0; 84.25

0,10,0.5,1,1; 80 0,10,0.5,1,1; 80

3.5,10,1,1,1; 80 3.5,15.5,1,1,0; 85.25,

5. CONCLUSION 

In this paper, CLP has been used to solve non convex 

MINLP problems by transforming them into master 

problem that are of pure IP by nature. The 

enumeration strength of CP can be suitably exploited 

to generate solution to IP problem which can 
subsequently corrected in sub-problems. The solution 

of the master problem is used to tighten bounds and 

add additional constraints so as to reduce the 

computational burden. This method has been 

successfully tested on two MILP and two non convex 

NLP and two non convex MINLP problems. The 

superiority of the proposed method lies in the fact 

that it does not require any initial guess as required in 

the traditional techniques. It has also been 

demonstrated that the traditional techniques are not 

very robust and yield different optima, depending on 

the initial values. 
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