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Abstract: This contribution presents a heuristic approach for solving nonconvex mixed-

integer nonlinear programming (MINLP) problems with highly constrained 

discontinuous domains. A new fuzzy penalty strategy is proposed to make stochastic 

algorithms capable of solving optimization problems with a large number of difficult-to-

satisfy constraints. The method consists of a dynamic penalty formulation based on the 

magnitude and frequency of the constraint violation, applied according to a hierarchical 

classification of the constraints. The new strategy is introduced to a multi-objective 

optimization algorithm based on evolutionary strategies. The performance of the 

proposed methodology is investigated on the basis of a multi-enterprise supply chain 

optimization problem. Copyright © 2002 IFAC

Keywords: Nonlinear programming, multi-objective optimization, discrete-time system, 

heuristic search, integer programming, algorithms, hierarchical decision making, planning 

1 To whom all correspondence should be addressed. 

 E-mail: cmartins@peq.coppe.ufrj.br 

1. INTRODUCTION 

Mathematical programming techniques have been 

widely applied to solve process systems engineering 

problems. A variety of practical problems such as 

optimization for integrated process design and 

control, dynamic allocation and location-allocation 

problems, design of multi-product batch plants, etc, 

have been modeled. These problems often involve 

hybrid discrete-continuous systems and are therefore 

formulated as mixed-integer optimization problems. 

Continuous variables usually describe process states, 

while discrete ones are related to the structure of the 

process. Discrete variables may be restricted to 

binary values, when defining the assignments of 

equipments and sequencing of tasks. 

The basic formulation of mixed-integer optimization 

problems, when represented in algebraic form is: 

Min Z = f (x, y)    s.t. Jj
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where f (x, y) is the objective function, h(x, y) are the 

equality relationships that describe the performance 

of the system (material balances, production rates) 

and g (x, y) are inequalities that define specifications 

or constraints for feasible scheduling. I and J are the 

index sets of equalities and inequalities, and x and y 

are continuous and discrete variables. Optimization 

problems are classified according to the type of 

variables and important properties of the functions, 

like linearity, convexity and differentiability. Mixed-

integer programming problems are commonly 

regarded as steady-state models. Dynamic models 

give rise to multi-period optimization problems, in 

case of discrete time models and optimal control 

problems, in case of continuous time. Powerful 
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methods for solving large-scale mixed-integer linear 

programming (MILP) are well established and have 

been applied to practical problems for the last few 

decades. Methods for mixed-integer nonlinear 

programming (MINLP) problems, on the other hand, 

have become available recently. Some reviews on 

optimization methods have been published (Biegler 

and Grossmann, 2004, Grossmann, 2002). Most 

common optimization algorithms are based on 

branch and bound and on decomposition methods. 

Such algorithms, however, are not guaranteed to 

locate the global optimum in case of nonconvexity of 

objective functions or constraints, as it may give rise 

to multiple local optima (Stein et al., 2004). 

Relaxation of integer variables as continuous ones 

and subsequent rounding of the solutions may lead to 

inaccuracy and infeasible solutions. Decomposition 

of the original problem to a set of sub-problems may 

require the objective functions and constraints to be 

differentiable, which restricts its applicability for a 

large number of real-life problems (Cheung et al.,

1997). Moreover, algorithms based on classical 

nonlinear optimization theory may not be capable of 

solving large-scale applications, due to their high 

computational effort requirement (Stein et al., 2004).

Evolutionary algorithms (EAs) have received 

considerable attention over the last decade, as they 

have shown to be robust for solving highly nonlinear, 

nondifferentiable and multimodal optimization 

problems. Some studies have confirmed the 

capability of EA-based methods to solve MINLP 

problems involving local optima and nonconvexities 

(Ryoo and Sahinidis, 1995, Ostermark, 1999, 

Cheung et al., 1997, Lin et al., 2004). Ostermark 

(1999) has successfully tested EA on a set of 

complex problems that could not be solved by the 

GAMS/MINOS package. Hybrid stochastic 

algorithms have been also employed to solve MINLP 

problems. Cheung et al. (1997) employed a modified 

grid search method with a genetic algorithm. Lin et

al. (2004) proposed a migration operation and a 

population diversity measure to avoid clustering. Ko 

and Evans (2005) applied a genetic algorithm-based 

heuristic to solve a set of NP-hard problems. 

Stochastic methodologies have been also used to 

treat multi-objective optimization problems. Guillén 

et al. (2005) solve a supply chain design problem as 

a multi-objective stochastic MILP model. Chan et al.

(2005) develop a hybrid genetic algorithm based on 

analytic hierarchy process to solve multi-factory 

supply chain models. Zhou and Hua (2000) use goal 

programming and analytic hierarchy process to 

address sustainable supply chain optimization and 

scheduling of continuous process industries. 

Azapagic and Clift (1999) use life cycle assessment 

in environmental management to solve a multi-

objective optimization system. 

Besides the inherent complexity of MINLP, the 

problem of finding any feasible solution may be 

itself NP-hard. Different approaches are employed to 

deal with constrained optimization problems. Some 

methods reject the infeasible solutions while others 

adopt repair operations. Modifying nearly-feasible 

solutions, however, may disrupt the schema 

excessively or incur undue computational overhead. 

The most promising methods make use of penalty 

functions (Ostermark, 1999). By penalizing 

infeasible individuals, these methods turn such 

individuals into mediocre ones. This procedure 

prevents the propagation of the infeasible solutions to 

future generations, since mediocre individuals have 

little chance to survive. Such strategy transforms 

constrained problems into unconstrained ones. 

In this contribution, a new penalty function method 

based on fuzzy logic theory has been specially 

developed to treat problems in which feasible regions 

are very difficult to reach.  The approach was first 

developed for multi-objective optimization, but it can 

be extended to any stochastic optimization algorithm. 

It comprises a dynamic penalty function based on the 

constraint classification and the intensity and 

frequency of violation. The optimization is 

encouraged to solve the constraints according to pre-

established priority, until the feasible region is 

reached. The proposed formulation is illustrated on a 

numerical example of a multi-enterprise supply chain 

network. A multi-product, multistage and multi-

period production and distribution-planning model is 

addressed. A multi-objective optimization algorithm 

based on evolutionary strategies is applied to 

determine the best configuration of the supply chain 

network. The proposed method has successfully 

attained a compromise solution among all participant 

enterprises, providing a balanced satisfaction for all 

objectives. The results of a hypothetical case study 

confirmed the ability of the proposed method in 

solving complex MINLP problems. 

2. EVOLUTIONARY ALGORITHMS 

Evolutionary algorithms are robust stochastic 

methods for global and parallel optimization. These 

methods are founded on the principles of natural 

genetics, in which the fittest species survive and 

propagate while the less successful tend to disappear. 

The evolution process consists of performing a 

population of individuals with operators to generate 

the next generation. The basic operators simulate the 

processes of selection, crossover and mutation, which 

happen according to pre-established probabilities. 

Selection is based on the survival potential, 

expressed by the fitness function. Crossover involves 

random exchange of characters between pairs of 

individuals, in order to produce new ones. Mutation 

is an occasional change in individual’s characters 

randomly chosen. It introduces diversity to a model 

population. Evolutionary methods are able to deal 

with ill-behaved problem domains, such as the ones 

presenting multimodality, discontinuity, time-

variance, randomness and noise. 

Evolutionary algorithms are regarded to be suitable 

to solve multi-objective optimization problems as 

they work on a population of individuals. Multi-

objective optimization is a special extension of the 

optimization theory in which multiple opposing 
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targets must be accomplished simultaneously. The 

search process aims to find solutions that are the best 

on all objectives. The optimal solution constitutes a 

family of points, called Pareto optimal front, that 

equally satisfy the set of objective functions. An 

important characteristic of the Pareto set is that no 

improvement can be obtained in any objective 

without deteriorating at least one of the other 

objectives. As all objective functions are optimized 

at the same time, the solution constitutes a 

compromise between the conflicting aims.  

3. THE PROPOSED STRATEGY 

This work focuses on the solution of nonconvex 

MINLP optimization problems that involve 

discontinuous domains and a large number of 

constraints. Such problems are difficult to solve as 

they present multiple local optima dispersed in a 

discontinuous search space. Even stochastic 

algorithms can be easily trapped in a local optimum 

surrounded by an infeasible region. Additional 

difficulty emerges in case of discrete problems with 

binary variables. Any change in these variables may 

interrupt the search progress. Also, constraints 

involving these variables are easily violated, which 

makes feasible regions hard to be found. 

In order to face these drawbacks, a heuristic strategy 

is proposed to provide multi-objective stochastic 

algorithms with an efficient tool to handle these 

difficulties. The strategy consists of a penalization 

procedure that incorporates the constraints into the 

objective function by means of a penalty function. 

This function associates a certain value with the 

extent each constraint is violated by each individual.

The procedure is formulated as follows: 

Minimize  F (x, y) = f (x, y) + P ( , x, y)

where P ( , x, y) = k SVC (x, y)

x R
n, y Z

m,  is a predefined constant related to 

the k-th rank and P ( , x, y) is the dynamic penalty 

function. SVC (x, y) is the sum of violated 

constraints, which incorporates the distance from the 

feasible set and the frequency of constraint violation:  

SVC (x, y) = 
p
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A procedure based on the fuzzy logic theory is 

adopted to generate a hierarchical sequencing on the 

optimization process. The constraints are first 

arranged into classes, according to the level of 

difficulty offered to search evolution. Three classes 

are suggested: rank 1 - binary variables; rank 2 - 

discrete or integer variables; rank 3 - continuous 

variables. A finite value is associated with each rank, 

differing by at least one order of magnitude. The aim 

is to encourage the hardest constraints to be satisfied 

first. Constraints involving binary variables are 

usually the most demanding and must be strongly 

penalized. This strategy is essential to the process to 

succeed. As the degree of freedom continuously 

reduces during optimization, it will probably fail if 

the hardest constraints are left to the end. 

The proposed strategy also introduces a modified 

mutation operator, which is applied when the search 

is trapped in an infeasible region. This operator 

consists of a Monte Carlo-based mutation, which 

simulates different procedures for early and final 

iterations, due to the distinct degrees of freedom. A 

wide mutation, called extensive Monte Carlo-based 

mutation, is first performed, alternating discrete and 

continuous variables. In final stages, a local Monte 

Carlo-based mutation is applied. In this case only 

variables directly associated to the violated 

constraints are mutated within a certain range. An 

EA-based algorithm developed in a previous work 

(Silva and Biscaia, 2003) is employed to solve 

MINLP problems. Some adaptations are required to 

introduce the proposed strategy into a general genetic 

algorithm, as suggested as follows:  

1) create a random initial population;  

2) evaluate the individuals and apply the penalty 

function method; 

3) rank the individuals and calculate their fitness;  

4) apply selection, crossover, mutation operators;  

5) if progress fails for N iterations, apply extensive 

Monte Carlo-based mutation in a best individual; 

6) repeat steps (2)-(5);  

7) if iterative process stagnates for M attempts of 

step (5), apply a local Monte Carlo-based 

mutation in a best individual; 

8) repeat steps (2)-(7) until no constraint is violated 

or a limit number of attempts is reached;  

9) if all constraints are satisfied, register non-

dominated individuals in the Pareto set filter; 

10) if a limit number of attempts is reached repeat 

(1)-(9).

Other modifications of the original algorithm include 

a rounding procedure to operate in discrete variable 

space, reformulation of the mutation operator to 

perform changes in a random number of the 

characters and grouping of decision variables 

associated to each constraint. High mutation 

probabilities are also used to increase the algorithm’s 

exploitation ability and improve the convergence.  

4. PROBLEM STATEMENT 

An example problem dealing with a multi-enterprise 

supply chain is considered in this work. It consists of 

a centralized three-echelon structure including 

manufacturing, storage and market. The structure 

comprises two retailers, two warehouses and one 
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plant. The distribution channels consist of a smaller-

scale distributor with fast delivery service and a 

larger-scale distributor with a slower delivery 

service. The larger-scale service implies lower 

operating costs, but has a transportation lead-time of 

one week. Delayed shipment problem is considered 

in the distribution system. The plant batch 

manufactures two different products. The production 

has a fixed cost associated and can be conducted in 

regular time or overtime, to satisfy customer 

demand. If the production line is idle, a fixed idle 

cost is added to the total manufacturing cost. The raw 

material purchasing cost is included in the 

manufacturing cost.  

The overall problem aims to determine: a) 

production schedule, including production rates for 

all time intervals; b) transportation of products; c) 

sale quantity; d) costs and revenue of each enterprise 

and e) inventory level of each enterprise. Given: a) 

product sale prices; b) costs of unit manufacturing, 

transport, handling and inventory; c) manufacturing 

data in regular time and overtime; d) transportation 

data - capacity level and lead time; e) inventory 

capacity and safe inventory quantity and f) 

forecasted customer demand over a time horizon. 

The objective is to determine the configuration of the 

supply chain that maximizes the profit of each 

enterprise, the customer service level and safe 

inventory level, taking into account a fair distribution 

of these targets among all the participants. 

4.1 Model Formulation

The optimization problem is formulated as a multi-

objective mixed-integer nonlinear programming 

(MOMINLP) problem. The mathematical 

formulation for the supply chain model was 

originally proposed by Chen et al. (2003). All 

parameters and system information are presented in 

the above-mentioned reference.  

Objective functions: 

Overall profit: 
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Constraints:  

Inventory balance - Retailer: 
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Shortage in safe inventory constraints - Plant: 
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5. RESULTS AND DISCUSSION 

According to the problem description, three-levels of 

enterprises are integrated in a multi-objective 

optimization problem. Planning horizons varying 

from 3 to 8 weeks are tested. The multi-objective 

optimization problem consists of 12 objective 

functions. A population size of 25 individuals, 

crossover probability of 90% and mutation 

probability of 30% are used to solve the problem. 

Some of the results obtained for a three-week 

planning horizon are shown in Figure I. Each line on 

the graphics represents an optimal result.  Table 1 

presents the best results obtained for each objective 

function in some of the optimization cases. For the 

sake of space, the complete Pareto set is omitted. 

Table 1.  Best results 

     

i t = 3 t = 5 t = 6 t = 8 

1 5.84x105 1.22 x106 9.69x105 9.25x105

2 1.0 0.83 0.91 0.86 

3 0.97 0.61 0.74 0.78 

4 5.68x105 1.09x106 1.06x106 1.45x106

5 0.97 0.84 0.97 0.68 

6 0.94 0.73 0.71 0.76 

7 1.68x105 4.61 x105 3.05x105 6.26x103

8 1.0 0.99 0.67 0.73 

9 7.63x105 2.14 x106 1.99x106 1.61x106

10 1.0 0.96 0. 94 0.69 

11 1.05x106 1.52 x106 1.09x106 2.54x106

12 1.0 0.76 0.77 0.72 

High values for all objective functions are obtained, 

which indicates that the proposed strategy leads to an 

unbiased search process. A balanced exploration 

process is mandatory to obtain a good compromise 

solution for all objectives and satisfy a fair 

distribution. The results obtained for the most 

relevant objective functions, which represent each 

enterprise profit, do not differ in order of magnitude 

for each case study. Hence, any of the solutions in 

the Pareto set would be satisfactory to all participant 

enterprises.

Table 2 presents the number of variables and 

constraints of each optimization case, as well as the 

number of generations required. The three-week 

period problem was solved in 112 seconds on a 

Pentium IV 2.4 GHz. The eight-week problem, on 

the hand, took around 12 hours to perform 8,790 

iterations. It should be highlighted that this 

computational effort is required to find the feasible 

region. In a previous work, the original version of the 

algorithm was used to solve the same problem (Silva
and Biscaia Jr., 2005). The maximum planning 

horizon the algorithm was able to solve was three 

weeks.

Fig. I. Optimal solutions 

Table 2.  Number of variables, constraints and 

iterations

 t = 3 t = 5 t = 6 t = 8 

# var 122 254 320 452 

# constr 172 344 430 602 

# iter 1,066 3,190 4,090 8,790 

6. CONCLUSIONS 

In this contribution, a dynamic penalty formulation 

based on the fuzzy logic theory is proposed to solve 

highly constrained MINLP problems in which 

feasible regions are very difficult to be achieved. The 

strategy includes a constraint classification, which 

induces a hierarchy search progress; a penalty 

function, which incorporates different levels of 

penalization into the fitness function according to the 

constraint classification, the intensity and frequency 
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of constraint violation; and a mutation operator, to 

prevent the search to stagnate. A problem involving a 

large number of difficult-to-satisfy constraints is 

presented to evaluate the performance of the 

algorithm. A multi-product, multistage and multi-

period production and distribution-planning model, 

formulated as a multi-objective mixed-integer 

nonlinear programming (MOMINLP) problem, was 

selected. A compromise solution among all 

participant enterprises of the supply chain is 

achieved, ensuring a fair distribution profit. The 

results confirm the efficiency of the proposed 

approach to solve nonconvex MINLP problems 

involving large search spaces, number of constraints 

and objective functions.  

NOTATION

Indices     

i products   r retailers 

d distribution centers   p plants 

t periods 

k  transportation capacity level from d to r 

k’  transportation capacity level from p to d 

Parameters 

USR{i, pd, dr, r} unit sale revenue of i 

UICi{i, p, d, r} unit inventory cost of i 

UHC{i, p, d, r} unit handling cost of i for p, d, r  

UTC{k, dr} kth-level unit transportation cost  

FTC{k, dr} kth-level fixed transportation cost 

FTC{k’, pd} k’th-level fixed transportation cost 

UMC{i, p} unit manufacturing cost of i 

OMC{i, p} overtime unit manufacturing cost 

FMC{i, p} fixed manufacturing cost for  

changing plant to make i 

FIC{i, p} fixed idle cost to keep plant idle 

FCD{i, r, t} forecasted customer demand for i 

TLT{pd, dr} transportation lead time 

SIQ{i, p, d, r} safe inventory quantity 

MIC{i, p, d, r} maximum inventory capacity  

TCL{k, dr} kth transportation capacity level 

MITC{d} max. input transportation capacity 

MOTC{d} max. output transportation capacity 

FMQ{i, p} fixed manufacturing quantity of i 

OMQ{i, p} overtime fixed production quantity 

MTO{p} maximum total overtime in  

 manufacturing period 

Binary Variables 

Y{k, dr, t} kth transportation capacity 

{i, p, t} manufacture in regular-time  

{i, p, t} set up plant to manufacture i 

{i, p, t} change plant over to manufacture i 

{i, p, t} manufacture with overtime 

workforce

Integer variables 

S{pd, dr, r, t} sales quantity of i 

Q{k, dr, t} kth-level transportation quantity 

Q{pd, dr, t} total transportation quantity  

I{i, p, d, r, t} inventory level of i in p, d, r 

B{i, r, t} backlog level of i in r at end of t 

D{i, p, d, r, t}  shortage in safe inventory level 

TMC{p, t} total manufacturing cost of p 

TPC{d, r, t} total purchase cost of d, r 

TIC{p, d, r, t} total inventory cost of p, d, r 

THC{p, d, r, t} total handling cost of p, d, r 

TTC{d, t} total transportation cost of d 

PSR{p, d, r, t}  product sales revenue of p, d, r 

Z{p, d, r, t} net profit of p, d, r 

Continuous variables 

SIL{ p, d, r,, t} safe inventory level of p, d, r 

CSL{r, t} customer service level of r 
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