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Abstract: This paper aims at to propose a benchmark MPC controller to be used in the

performance assessment of existing industrial MPC systems. The basic questions are

how the performance could be evaluated in a realistic basis and how to judge the

performance of a controller that is already in operation by comparing it with another

controller that could be really implemented in the same system. Here, it is assumed that

the ideal controller will inherit the structure, input constraints and tuning parameters of

the controller whose performance is to be evaluated. This means that the design of the

ideal controller is standard and there is no need to tune the performance assessment

algorithm. It is proposed a controller that preserves closed loop stability for any adopted

tuning parameters. This is requisite for any performance evaluation procedure that is

expected to operate in an on-line scheme. The proposed controller is compared by

simulation with other benchmark controllers proposed in the control literature.
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1. INTRODUCTION

Model predictive control (MPC) strategies, such as

the ones based on dynamic matrix control (DMC),

have become the standard control alternative for

advanced control applications in the process

industries (Qin and Badgwell, 2003). It is a market,

which is growing at a compound annual rate of

approximately 18% (Automation Research

Corporation, 2000), and substantial benefits are

generated directly from the ability of MPC to ensure

that the plant operates at its most profitable

constraints. But, as most control algorithms, after

some operation time, MPC is seldom performing as

when it was commissioned. It is common to find

MPC applications delivering only 50% of the

expected benefit when the assessment is made 2-3

years after commissioning (Treiber et al., 2003).

MPC controller design and tuning involve many

uncertainties related to approximate process models,

estimation of disturbances and assumptions about

operation conditions. A surprising high percentage of

the implemented MPC controllers suffers degradation

in terms of the achieved performance as a result of

changes in process dynamics, sensor/actuator failure,

estimator bias, equipment fouling, feedstock

variability, changes in product specifications, etc.

Therefore, to sustain the benefits of MPC systems

over a considerable period of time, the performance

needs to be monitored and assessed on a constant

basis. This task has proven to be a much greater

challenge (Hugo, 2000; Shah et al., 2001) than

initially expected and it requires the presence of

effective tools to establish the root causes of the poor

control quality and to define the need to retune if

necessary.
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Practical applications of controller performance

assessment (CPA) have triggered an increasing

interest of academia and industry in the development

of a benchmark MPC controller. Several CPA

techniques have been proposed in the literature

during the last years, some of them being

incorporated into commercial software packages.

But, in general, all the CPA techniques explicitly or

implicitly involve comparison of the current

controller quality with a theoretical benchmark, i.e.

an ideal controller that could never be implemented.

CPA techniques can be divided into two major

categories (Qin, 1998): stochastic and deterministic

methods. Stochastic CPA methods evaluate the

closed-loop performance for zero-mean changes,

such as random disturbances, measurement noise, etc.

These techniques utilize stochastic measures such as

variance to evaluate the performance of the

controller. In this area, the most notable work is by

Harris (1989) that proposed the use of the minimum

variance controller (MVC) as a benchmark to assess

the performance of SISO feedback controllers. On the

other hand, deterministic CPA methods are

concerned with non-zero mean changes in the set-

point or load disturbances and utilize deterministic

measures such as settling time, integral square error

(ISE), rise time, etc. Aström (1991) discussed some

alternatives to evaluate the performance of PID

controllers. Although MVC benchmarks bring up

important aspects of the controller performance,

deterministic methods are more informative and

present a more practical way of assessing controller

performance. Results from statistic and deterministic

CPA methods usually cannot be best achieved

simultaneously (Qin, 1998).

In this paper it is proposed a systematic CPA

framework for MPC systems with focus on set-point

tracking. The methodology utilizes the available

process model to determine the ideal control system

performance under constraints. The work is

motivated by the fact that the major disturbances in

chemical engineering processes are not stochastic but

deterministic such as set-point moves and sudden

load changes on the system (MacGregor et al., 1984)

and for the demand for new methodologies to

evaluate MPC performance (Patwardhan et al., 2002).

The paper is organized as follows. In Section 2, we

review the most relevant CPA techniques for MPC.

Section 3, presents our proposed CPA method.

Section 4 shows a case study based on the Shell

standard control problem. Finally, conclusions and

future directions are pointed in Section 5.

2.REVIEW OF CPA TECHNIQUES FOR MPC

In the literature on CPA of feedback control systems,

the MVC benchmark has been used as a measure of

performance in the first level of the control structure

where SISO controllers are to be evaluated. This

benchmark is reasonable because the objective of

most SISO controllers is to keep the process output at

their set-point. However, MPC controllers have much

more sophisticated objectives than merely keeping

outputs at their set-points. They are usually

implemented as part of a hierarchical control

structure, where in an upper layer an optimization

algorithm continuously updates a set of optimal

economic reference values and passes this set to the

MPC (Qin and Badgwell, 2003). The MPC must

move the plant from one reference point to another

subject to operational constraints. Of course, MPC

turns to be essentially a nonlinear controller,

especially when operating at the constraints. In this

case, the use of MVC or a linear controller

benchmark is not well suitable as some inherent

limitations imposed by constraints are neglected and

minimum variance performance will be unachievable

by the MPC (Zhang and Henson, 1999). Examples

highlighting the limitations of the MVC benchmark to

assess the DMC controller are shown by Hugo

(1999).

Patwardhan et al. (1998) discussed the use of the best

historical values of objective function as a practical

benchmarking technique. This approach requires a

priori knowledge of an example case where the

performance was good during a certain time period of

time according to some expert assessment. Huang and

Shah (1999) proposed the linear quadratic Gaussian

(LQG) benchmark as an alternative to the MVC. The

LQG is more general than the MVC and it can be

designed, using the available process model, in a

similar form as the MPC. This benchmark is

translated in a tradeoff curve that displays the

minimal achievable performance in terms of the input

and output variances. However, the LQG cannot

handle constraints and it still represents an

unattainable standard for commercial MPC

algorithms. Zhang and Henson (1999) suggested the

use of the on-line comparison between expected and

actual process performance. The expected

performance is obtained when the MPC controller is

applied to the process model instead of the actual

plant and it is neglected the effects of unmeasured

disturbances. Ko and Edgar (2001) presented a

benchmark based on the constrained finite-horizon

MVC controller, which is obtained using the

knowledge of the process and noise models. The

main utility of this approach lies in quantifying the

effects of constraints on the MPC performance. When

the constraints become inactive, the proposed method

naturally becomes the unconstrained MVC.

Patwardhan et al. (2002) suggested the design case as

a benchmark to evaluate the statistical performance of

MPC. The methodology is very straightforward to be

implemented on-line. The cost function used in the

design of the CPA can be obtained from the MPC

controller. The achieved cost function can be

computed with little effort through appropriate

weighting of the measured input and output data. The

technique can explicitly handle constraints and it is a
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true index that represents whether the controller is

performing as it was designed or not. However its

application is limited, as most of the commercial

MPC algorithms do not return the design value of the

cost function. Grimble (2003) presented a multistep

linear quadratic Gaussian predictive control

(LQGPC) cost function as benchmark to evaluate

MPC. The cost function involves the unconditional

expected value of the tracking error and weighted

control signal components at present and future time

steps, whose values are obtained from the solution of

appropriate Riccati and Lyapunov equations. The

results highlight the relationship between MPC and

LQG and the way that the performance of MPC

should be assessed. Julien et al. (2004) proposed a

MPC benchmark for assessing univariate MPC

controllers. By using routine operating data and

knowledge of the process time-delay, two

performance curves are constructed. One represents

the operation of the installed MPC, while the other

corresponds to the operation of a hypothetical MPC.

If the gap between these operating curves is

significant, it may indicate that a re-design of the

MPC is necessary.

Schäfer and Cinar (2004) presented an integrated

methodology for CPA and diagnosis of MPC

systems. They use a LQG benchmark to evaluate

performance and a ratio between design and achieved

costs for diagnosis of causes of poor performance.

Finally, Huang and Georgakis (2005) proposed the

minimum (settling) time optimal control (MTOC)

benchmark. MTCO-FB is an ideal benchmark for

unmeasurable disturbance regulation, while MTCO-

FF is an ideal benchmark for set-point tracking. This

last, serves also as a reference to determine whether

extra sensors and feedforward will yield significant

control improvement.

3.PROPOSED TECHNIQUE FOR CPA OF MPC

SYSTEMS

Following Zhang and Henson (1999), we propose a

CPA technique that involves an on-line performance

comparison between expected and actual MPC. But,

in this case, the expected performance is obtained

with a particular MPC, called here “ideal MPC”, that

is used to control the nominal process model. The

Proposed benchmark is represented schematically in

figure 1.

From figure 1, we observe that the optimal set-point

( spy ) provided by the upper optimization layer is

applied to both MPC systems, actual and benchmark.

Estimated disturbances ( d̂ ) are used to correct model

prediction to asymptotically remove offset. The

performance of these systems is measured using

adequate indeces, which are compared to determine

the performance status of the actual MPC.

Fig. 1. Scheme of the proposed CPA for MPC.

In the sequel, our ideal MPC controller and

performance index will be discussed.

3.1 “Ideal MPC” Controller

For a more realistic comparison, an “ideal MPC”

should preserve some characteristics of the

implemented MPC, i.e. full utilization of the

available process model, incorporation of constraints

and computation based on the receding horizon

control philosophy. Also, as the ideal controller may

utilize tuning parameters that are different of the

tuning parameters of the implemented controller, we

require that the ideal controller be at least nominally

stable. A MPC controller with nominal stability and

that tolerates input saturation was proposed by

Rodrigues and Odloak (2005). It is assumed that

input saturation can occur in the transition from one

set-point to another and that the system remains

stabilizable during the time the input remains

saturated. Consideration of input saturation is usually

necessary in a process that operates near the optimal

economic conditions.

It can be shown that an unconstrained MPC law can

be formulated as:

)()(
)1x()1x( kEKku o

nypMPCnum ⋅⋅ =∆ (1)

where )1()()( −−=∆ kukuku  is the vector of future

increment control actions, ( ) ( )nypnum
MPCK ⋅⋅ℜ∈ x  is

the time-invariant feedback control gain matrix,

)(kE o  is the vector of predicted unforced errors, k

is the sampling instant, m  is the control horizon, p

is the prediction horizon, and nu  and ny  ( nynu > )

are the number of manipulated and controlled

variables, respectively. The development of our

“ideal MPC” is to follow a two-step procedure

(Rodrigues and Odloak, 2005):

1) Off-line step. Compute a bank of stable

unconstrained MPC controllers ( MPCK ),
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corresponding to all possible configurations of

manipulated inputs and stabilizable outputs. Let

nc be the number of configurations and let us

designate as jMPCK ,  the gain of the controller

corresponding to configuration j (j=1,…,nc).

2) On-line step. At each sampling period, compute

the predicted unforced error ( oE ) and find the

solution of the following optimization problem:
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where Q  is the output error weighting matrix and R

is the input increment weighting matrix. Note that the

input increment constraints are not included in the

above problem. Only the first component of the

computed u∆  is used. The successive application of

this control law produces an asymptotically stable

closed-loop system.

3.2 Measure Performance Index

Various dimensionless performance indices have

been proposed in the literature. In this work, the

controller performance is represented by:

( )
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where )(kysp  is the set-point, )(ky  is the value of

the controlled variable and N  is the length of the

past data operation window. The performance

measure index )(kη , which is selected, to bear some

similarity with the one proposed by Harris (1989), is

the ratio of the performance provided by the “ideal

MPC” to the actual performance provided by the

present MPC system:

)(

)(
1)(

act

ideal

kJ

kJ
k −=η (8)

The index defined in Eq. (8) gives numerical bounds

for controller performance 10 ≤≤ η , where 0=η

indicates excellent performance and 1=η  indicates

poor performance. In the subsequent section, the

proposed approach is applied to evaluate the MPC

performance for a simulated industrial process.

4.CASE-STUDY

4.1 The Shell Standard Control Problem

The Shell standard control problem (SSCP) is a well-

known process control problem developed with the

intention of providing a standardized simulation

protocol for the evaluation of control systems. This

system is an industrial heavy oil fractionator process,

as shown in figure 2 (Prett and Morari, 1987).

Fig. 2. Layout of the heavy oil fractionator process

The SSCP embodies a number of scenarios that can

occur in controlling the process unit. It is represented

by a 5x7 MIMO system, which is highly constrained,

with very strong interactions, unmeasured

disturbances, mixed fast and slow responses, severe

uncertainties, large time-delays and simultaneous and

conflicting control and economic objectives. The

process input/output relations are modeled by transfer

functions of first-order plus time-delay. The full

process model and its associated uncertainty can be

found in Prett and Morari (1987) and Maciejowski

(2002).

4.2 MPC Control Design

Let us consider only a part of the SSCP and study the

servo problem of the subsystem in which the

controlled variables are the top draw composition

( 1y ) and side draw composition ( 2y ), and the

manipulated variables are the top draw ( 1u ), side
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draw ( 2u ) and bottom reflux duty ( 3u ). The transfer

function of this subsystem is:
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where 1δ , 2δ  and 3δ  represent uncertainties in the

gain parameters and they can vary between –1 and

+1. Here, they are assumed to be 5.031 == δδ ,

5.02 −=δ .

The control objective is set-point tracking and, for

this purpose, a conventional QDMC (quadratic

dynamic matrix control) is proposed. This controller

is designed based on the nominal process model (i.e.,

0321 === δδδ ) and on the minimization of the

following cost function:
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The tuning parameters used in the QDMC and in the

“ideal MPC” are: 75=p , 10=m , )1,1(diag=Q ,

diag(1.5, 0.15, 1.5)R =  and sampling time

4minT = . The controllers are implemented in the

hierarchical control structure as shown in figure 1.

However, in this study, it is considered that the

optimization layer can be ignored in the simulations,

i.e. the set-points are assumed to be known.

4.3 MPC Performance Assessment

The hierarchical control structure of the MPC system

is not included in the problem considered by the

performance assessment method, since it does not

really matter if the set-point for the MPC controllers

comes from an operator or a computer program.

Thus, in our example performance assessment is

carried out for the set-point changes shown in figure

3. It is also shown the responses of the system outputs

for the QDMC based on the nominal model when

controlling the true system that contains uncertainties

as described before. In figure 3 are also shown the

output responses for three different benchmark

controllers. QDMC2 is the benchmark corresponding

to the same QDMC controller of the previous case

but controlling the nominal model. This scenario

corresponds to the design case. The second

benchmark controller corresponds to the LQG

(Dorato et al., 1995) optimally tuned to control the

nominal process. Finally, the third benchmark

controller is the proposed controller with the same

tuning parameters as the QDMC except the constraint

in the control moves that is not included in the

control problem. Figure 4 illustrates the responses for

the inputs of the system.
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Fig. 3. Output responses of the Shell system
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Fig. 4 Input u2 responses of the Shell system

Table 1 shows the numerical values of the controller

performance defined by Eq. (7) and also shows the

performance indices defined by Eq. (8) for the

QDMC controller applied to the uncertain system in
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terms of each of the benchmark controllers described

before. From figure 3, it is clear that the LQG

produces the best nominal performance but it is not

realistic as it does not satisfy the input constraints as

shown in figure 4, where the minimum bound of input

u2 is not satisfied during part of the simulation time.

Table 1 shows that QDMC2 produces a more

conservative index that the proposed benchmark

which gives a better indication of the performance of

the implemented controller.

Table 1. Control performances and indices

System J η
QDMC 3.4273 ---------

QDMC2 2.6710 0.2207

“Ideal MPC” 2.4845 0.2751

LQG 2.0597 0.3990

5.CONCLUSIONS

In this work, it is proposed a new MPC benchmark

controller whose purpose is the realistic evaluation of

the performance of MPC controllers implemented in

industry. The proposed benchmarks has as main

characteristics to consider input constraints and

guaranteed nominal stability, which is usually not

attended by other proposed benchmark controllers.

The approach was tested by simulation in a typical

system of the process industry with satisfactory

results.
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