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Abstract: This article aims to construct an “inference model” (IM) that assesses the closed loop 
performance and robustness for SISO controllers, with no need of intrusive tests (i.e. set-point
changes or open-loop step tests). The IM is generated for a large set of plants, disturbances, and
tuning parameters. The possible inputs for the IM are 9 standard assessment measurements (e.g.,
FCOR, standard deviation, etc) on-line available, commonly present in commercial tools. Three
IMs were developed for the following targets: the closed loop and open loop rise time ratio (Rt R),
Gain Margin (GM), and normalized integral of square error (ISE). These values are obtained by 
intrusive tests. Four different classes of inferential models (i.e., Neural Networks, Neuro Fuzzy, 
PLS, and QPLS) are compared. The best results are obtained by Neural Network IM. The results 
obtained show that the methodology is very promising. Copyright © 2006 IFAC
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1 INTRODUCTION

Process control increases the plant performance by 
the reduction of the variability of the key variables.
After the variability reduction, the process can
achieve a new operating point nearer the restrictions,
where the profit is higher (Marlin, 1995).

Even if the actual controller performance is good, 
some factors can deteriorate the performance during
the operation:

• Equipment fouling
• Sensor/actuator problems
• Seasonal influence

• Feed changes
• Operating point changes

Assess on-line the performance of each controller is 
essential to keep the plant in a profitable operating
point. However, quantify the performance of each
controller in a typical refinery of petrochemical plant 
is a difficult task, due to the large amount of loops 
(usually about 1000 to 2000 loops).

The aim of this work is build an inferential model 
(IM) to the closed loop performance and robustness 
indexes. The inputs of this IM are the indexes
commonly present in commercial tools, described in 
section 2.
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This paper is organized as follows: section 2 provides 
an overview about the main performance indexes.
Section 3 shows the main limitations of these
techniques. In section 4 an inferential model to
determine the closed loop performance based on on-
line indexes is introduced. In section 6, different
techniques to build the inferential model to predict 
closed loop performance is shown, which is tested
through a case study in section 7.

2 ON-LINE INDEXES

This section shows the most used indexes to assess
closed loop performance available in the commercial 
software. These indexes will be used as the input of 
the inferential model proposed in this work.

2.1 Performance Index based on Minimum 

Variance Controllers

Harris (1989) proposed an index that assesses the 
performance of controllers using the minimal
variance controller as benchmark. The performance 
index, proposed by Harris ( )(dη ) is calculated by the
following relation:
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where 2
MVσ  is the variance produced by the

minimum variance controller and σy
2 is the actual 

loop variance.

The values of η  always are between 0 and 1.
Increasing values of η indicates the performance
becomes better. The actual variance is easy to
determine with a window of closed loop data.
However, the minimal variance for a given control
loop is more difficult. It depends both on the plant
and the kind of disturbance. Several methodologies 
to estimate the minimum variance are described in 
Huang and Shah, (2001).

The main advantage of minimal variance based index 
is only closed loop data must be provided to assess 
the performance. 

2.2 Performance Index based Controlled Variables

(CV) monitoring

Another quite simple possibility is to use indexes
based on the error of the controlled variable. The 
most used are:

• Standard deviation of CV (StdCV)
• ISE of CV (ISECV)
• Percentile error of CV (E%CV), i.e. the

mean absolute error of controlled variable 
divided by the mean value of CV.

All these indexes are calculated using only closed-
loop data. No invasive tests are needed. 

2.3 Index related to Manipulated Variables (MV)

Indexes that quantify the work of the manipulated
variable are also used to estimate the performance. 
The most used are:

• Minimal variance calculated over the
manipulated variable (ηMV)

• Travel of manipulated variable (MV)
(TMV)

• Number of inversions of MV (IMV)

2.4 Commercial Software

The indexes discussed in the last sections together 
with other ones are available in almost all
commercial software for performance assessment
(e.g., ProcessDoctor of Matrikon, PlantTriage of
ExperTune, TriPerfeX of TriSolutions, among
others). These modern tools give to engineer a large
amount of indexes, which are not so conclusive and 
easy to interpret. To overcome this problem, in
section 4 it is proposed a novel approach, but before 
it is interesting to analyze the main limitations the 
current methodologies.

3 LIMITATIONS CONCERNING THE 
PREVIOUS METHODOLOGIES

This section shows the limitation of performance
index based on Minimum Variance Controllers
available in commercial software. Here the Harris
Index are calculated using the FCOR algorithm
(Huang and Shah, 2001) to estimate the minimum
variance. Despite the fact that this index aims to
generate a unique and absolute grade to quantify the 
performance of the controllers, the estimation of
minimal variance is not error free.

The main limitations of conventional on-line index 
are:

• Only performance is assessed, no
information about robustness is provided.

• The scale is not absolute (i.e. there is no 
guaranty that a loop with )(dη = 0.6 have a 
better performance than other loop for other 
process variable with )(dη = 0.4)

• The spam of the scale is deficient. In some 
cases, the difference between a poor and a 
good tuning is very small.

To illustrate these limitations, consider two different 
systems with the following transfer functions:
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Three different PI controllers were designed for each 
plant, using Frequency Domain Methodology
(Trierweiler et al. 2000):

• with the closed loop performance 6 times 
faster than open loop (6X), 

• equal closed and open loop performance
(1X), and

• closed loop 4 times slower than open loop
(0.25X).

Table 1 shows the Harris’s Index estimated
calculated by the FCOR algorithm for the two plants 
with the three controllers. This simple example
clearly shows the scale and resolution problems of 
FCOR.

To overcome these limitations, commercial software 
try to assess the performance based on heuristics that 
consider the performance indexes and the
characteristics of the loop (flow, temperature,
pressure, etc.), (Thornhill et al., 1999).

Table 1: FCOR for two different plants
with three different controllers

Controller Plant 1 Plant 2
6X 0.8823 0.7338
1X 0.7638 0.3306

0.25X 0.5724 0.0729

4 DEVELOPING AN INFERENTIAL
MODEL

The main reason of failure of conventional
performance indexes is the absence of a common and 
absolute target to quantify the performance and
robustness. These absolute index are common in the 
literature, however they are infeasible to determine in 
a real plant, because invasive tests are necessary.

In this work, a set of representative indexes are
determined using a set of plants with different
characteristics and several control loop performance
measurements calculated for several controller and 
plant pairs. In these plants, invasive tests are made 
and the absolute indexes are calculated. After that, 
using on-line measured indexes, a curve that gives 
the absolute indexes is fitted, using different
techniques. Figure 1 shows a schematic
representation of the inferential model proposed in
this work.

The main contribution of this work is build an
inferential model for performance and robustness
indexes that need intrusive tests to be calculated,
using only indexes that can be quantified on-line.

The performance and robustness indexes to be
inferred are:

• Ratio between closed loop and open loop
rise time (Rt R);

• Integral square error (ISE) for a unitary
setpoint change and unitary load disturbance 
normalized by the ISE of a controller with 
the same performance of open loop;

• Gain margin (GM).

Figure 1: Schematic representation of the inferential 
model proposed

To develop the inferential model the following four
different techniques will be will be tested:

• Neural Networks
• Neuro-Fuzzy (ANFIS)
• PLS
• QPLS

5 THE PLANTS AND CONTROLLERS

5.1 The Plants

Initially a set of plants to be analyzed are determined,
emphasizing different effects: dynamics, model
order, RHP zeros, pure time delay, RHP-poles, and 
integrating processes. These plants are very similar to 
used by Åström, and Hägglund (1995) to develop the 
Kappa-Tau PID tuning method.

5.2 The Controllers

The controllers are tuned using the Frequency
Domain Methodology (Engell and Müller, 1993,
Trierweiler et al., 2000). For each plant, the desired 
performance is determined and the methodology
gives the parameters for each plant, when the desired 
performance is achievable. In all cases, the controller 
used is Proportional-Integral (PI). Table 2 shows the 
desired performance for the controller, when it is
achievable.

The system is affected by white noise and a periodic
load disturbance with variable frequency and
constant magnitude (unitary). The indexes are
calculated in each scenario (each plant with each
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controller performance) with four different periods
for the periodic disturbances (10, 20, 30 and 50 time 
units).
About 80% of points are used to train each fit method 
and 20% of points are used to test the curves and 
quantify the correlation among the points. The points 
of the test set were selected randomly from the total 
set.

Table 2: Set of desired performances
for the controllers 

N Closed loop/open loop 
performance ratio

Overshoot (%)

1 10 10
2 8 10
3 6 20, 10, 5
4 5 10
5 4 20, 10, 5
6 2 10
7 1.5 10
8 1 5
9 0.75 5
10 0.5 5
11 0.25 5

5.3 Variable selection

A subset of original variables is selected, using a 
Genetic Algorithms (GA). The implemented
algorithm has the traditional operators (cross-over,
reproduction, and mutation), with binary codification 
(Han and Yang, 2004). A maximum set of 5 variables 
could be selected. The objective function, to be
minimized, is the predictive sum of squares (PRESS) 
(Qi and Zhang, 2001). The five variables selected by 
the GA are the same for three developed inferential 
models (i.e., RtR, GM, and ISE):

• Estimated the CV minimal variance 
• Process dead time (estimated)
• Process time constant (estimated)
• Standard deviation of CV
• Travel of manipulated variable (MV)

6 RESULTS

This section shows the results of the developed
inferential models obtained by different techniques
for the set of plants.

The results will be presented with more details for 
the ratio between closed loop and open loop rise
time.

The target to be achieved is normalized using
logarithm, because the most controllers are faster
than closed loop, and some are slower. This
normalization gives more importance to the faster
controllers, and makes the interpolation more
representative.

To quantify the quality of each method, the
correlation coefficient (R2) between yp (predicted
value) and y (target) is calculated.

6.1 Neural Network Inferential Model

The first approach to build the inferential model was 
based on neural networks (Hagan, 1995). The neural 
network used has 2 layers, the first using hyperbolic
tangent sigmoid neurons with variable number and 
the second with one linear neuron. The train method 
used is Levenberg-Marquardt backpropagation
(Hagan, 1995). The first test aims to estimate the 
ratio between closed loop and open loop rise time.
Table 3 shows the performance of several neural
networks with different number of neurons in the
hidden layer. The results are calculated considering 
the validation data. 

Table 3: Relationship between neural networks 
performance and number of neurons

Neurons R2 for the validation data
10 0.91
20 0.96
30 0.96
40 0.96
50 0.97
60 0.97

The best relationship between prediction quality
versus number of neurons is 20. Figure 2 shows the 
relationship between the predicted and real values for 
the closed/open loop ratio for each controller. 

Figure 2: Estimation of RtR rise time using neural 
networks for the validation data

Table 4: Relationship between neural networks 
performance for gain-margin (GM) and Integral of 
Square Error (ISE) with different neural-networks

Neurons R2 for GM R2 for ISE
10 0.95 0.96
20 0.96 0.98
30 0.97 0.99
40 0.97 0.99
50 0.98 0.99
60 0.98 0.99
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As shown in Figure 2 and Table 3, the prediction of 
the neural networks is very good. Similar results are 
also obtained for the gain margin and the integral of 
square error (ISE) as it is shown in Table 4.

6.2 Neuro-Fuzzy (ANFIS) Inferential Model

The second class of inferential model, which has 
been tested, is Neuro-Fuzzy. The architecture used is
ANFIS proposed by Jang (1993). The system has the 
same five inputs used by the neural networks. The
output to be fitted is closed loop and open loop rise 
time ratio (RtR). The ANFIS has 2 membership
functions, for each input. The architecture of each
membership function is S-Functions (Kasabov,
1998). Figure 3 shows the result using neuro-fuzzy
approach.

Figure 3: Interpolation of the RtR time using neuro-
fuzzy

Figure 4 shows that the predictive capacity of the 
Neuro-Fuzzy models is less effective than by neural
networks. The R2 obtained is also lower (0.91).
Similar results are obtained for gain-margin and
integral square error (ISE). The correlation factors
obtained are 0.89 and 0.96, respectively. 

6.3 Partial Least Squares (PLS) Inferential Model

PLS is a very robust technique to interpolate
correlated and noise data BAFFI et al. (1999). In this 
section, the latent variables are defined as linear
functions of input variables. All inputs are provided 
to the algorithm, and different number of latent
variables is used, as shown in Table 5:

Table 5: Correlation factor for the inferential models 
for RtR using linear PLS models

Latent variables R2 for the validation data
1 0.76
2 0.81
3 0.81
4 0.82
5 0.82
6 0.82

Figure 4 shows the best result obtained with linear 
PLS. The correlation index (R2) (cf. Table 5) and 
Figure 4 show that the inferential quality is very

poor. Similar results are obtained for GM and ISE, as 
shown in Table 6.

Figure 4: Interpolation of RtR using linear PLS

Table 6: Results obtained by inferential linear PLS 
models developed for gain-margin (GM) 
and Integral of Square Error (ISE) with 

different number of latent variables

Latent variable R2 for GM R2 for ISE
1 0.74 0.73
2 0.87 0.82
3 0.89 0.83
4 0.90 0.84
5 0.90 0.84
6 0.90 0.84

6.4 Quadratic Partial Least Squares (QPLS)

Inferential Model

QPLS is an alternative to improve the results of PLS 
models (BAFFI et al., 1999). Table 7 shows the
obtained results with QPLS approach.

Table 7: Correlation factor for the inferential models 
for closed loop and open loop rise time ratio

using QPLS models

Latent variable R2

1 0.83
2 0.84
3 0.86
4 0.87
5 0.88
6 0.88

Table 8: Results obtained by inferential QPLS 
models developed for gain-margin (GM) 

and Integral of Square Error (ISE) with different 
number of latent variables

Latent variable GM ISE
1 0.90 0.86
2 0.90 0.88
3 0.90 0.89
4 0.91 0.90
5 0.91 0.91
6 0.92 0.91

The QPLS models gave a good result, however
inferior than neural networks. Similar results are
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obtained for the inferential models developed for GM 
and ISE (cf. Table 8).

7 APPLYING TO THE CASE STUDY

The example shown in section 3 is used to verify the 
prediction quality of the neural network inferential 
model to predict RtR. Table 9 compares the results for 
each case. The true values are in the first column
while the corresponding predictions are in the other 
columns for each plant. 

Table 9: Prediction of the best
inferential model (IM) for two plants

True Values Plant 1 Plant 2
6X 5.3 5.7
1X 0.87 1.3

0.25X 0.37 0.24

Table 9 shows that the IM gives representative
results for RtR. These results are much superior and 
conclusive than of the obtained by the performance
index based on minimum variance controllers. With
these results, a control engineer can easily quantify 
the performance for each controller for the plant.

8 CONCLUSIONS

The work presented in this paper built an “inference
model” that can really and conclusively quantify
closed-loop performance. This novel approach is
based on measurements that can be easily assessed
on-line, without intrusive tests. The indexes
determined are closed loop and open loop rise time
ratio, gain margin (GM) and integral square error 
(ISE).

A set of plants are generated, considering different 
processes and a set of controllers with different
performances are tuned for each plant. The input 
indexes are calculated and invasive tests are made to 
determine the output indexes. The set of input –
output indexes are fitted using different techniques. 
The best results are obtained using neural networks,
for the three output indexes. Neuro-Fuzzy and QPLS 
have also given good results. Linear PLS gave the 
worst results.

Based on the results obtained, we can affirm that the 
IM proposed can not only assess the performance of 
industrial controllers, but quantify the real closed-
loop performance and robustness, with absolute
indexes, with no need of intrusive tests. 
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