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Abstract: In this study, attention is focused on the design of a scheduled-
optimization strategy for a batch MMA polymerization process. The objective
of this strategy is to track an optimal temperature, despite uncertainties in the
heat transfer and the gel e ect. This strategy makes use of an (uncertain) physical
model and on-line temperature measurements. The uncertain parameters are re-
estimated on line, so as the optimal temperature trajectory. The good decoupling
(in time) between the two major disturbances allows good performance to be
achieved.
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1. INTRODUCTION

From an industrial viewpoint, the methyl methacry-
late (or MMA, in the abbreviated form) poly-
mer compounds hold an important place in the
production of plastics. In this area as in other
sectors of the chemical industry, batch processes
have gained much interest essentially thanks to
better production exibility, easier scale-up from
laboratory setup and increased safety (reduced
dimensions).
From a scienti c viewpoint, polymerization pro-
cesses are relevant, essentially because complex
temperature-dependent chain reactions and heat
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transfers lead to highly nonlinear algebraic and
di erential equations. In addition, control design
for batch processes is a challenging task since 1) in
pure batch, no in uential input (e.g., feed) allows
to alter the reactor contents, only the reaction
rates can be modi ed by adjustment of the re-
actor temperature 2) only a few variables (tem-
peratures) can be measured on line, the polymer
properties being usually measured at the end of
the batch only. Batch processes are often run in
open loop using a prede ned (often heuristic) tra-
jectory. Several variants of this strategy are pro-
posed in the literature, such as classical feedback
allowing an optimal trajectory to be tracked, re-
peated estimation-optimization during the batch,
batchwise enhancement of the trajectories (run-
to-run optimization). Whatever the technique, the
calculation of a trajectory satisfying well-de ned
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end-of-batch properties requires that a physical,
rst-principles model of the process be developed.

However, due to time and cost constraints, the
model is often of limited accuracy, so that the
control strategy has to take the model-plant mis-
match into account and to enhance robustness,
eventually in detriment of nominal performance.
These industrial and scienti c aspects are abun-
dantly covered in previous works, such as (Kiparis-
sides, 1996) and (Terwiesch et al., 1994; Bon-
vin, 1998) and the references therein.

An MMA batch polymerization process is under
study, which is a laboratory scale plant at the
Aristotle University (Thessaloniki, Greece), and
a nonlinear state space model is used, which de-
scribes the gel e ect using a deterministic law
(Kiparissides et al., 2002; Mourikas, 1998). In
contrast with G. Mourikas’ approach, attention
is focused on the more common situation where
only temperature measurements are available on
line and the model is subject to two sources of un-
certainty: one a ects a gel e ect parameter (e.g.,
due to an inaccurate identi cation), the other
in uences the heat exchange coe cient between
the reactor wall and the solution (e.g., due to
fouling). When a robust worst-case approach is
used, improved performance is achieved in the
pure open-loop variant (Lepore et al., 2004; Nagy
and Braatz, 2004), i.e., the best input pro le is
calculated so as to minimize the worst criterion
value obtained when the gel parameter ranges
within speci ed limits (min-max problem). How-
ever, in the less conservative variant, which uses
a feedback controller for immediate disturbance
rejection, the feedback required for the gel ef-
fect must be positive and cannot deal with the
heat exchange disturbance. For these reasons, we
have selected a scheduled- optimization approach,
which uses on-line measurements in order to esti-
mate both the time-varying parameters (gel e ect
and heat exchange) and to update the model, so
that a new optimal trajectory is calculated. If the
heat exchange disturbance occurs batchwise, de-
coupled e ects of the disturbances on the solution
temperature are used to obtain accurate, reliable
estimates of the coe cients.

The paper is organized as follows. In section 2, the
process is described and a nonlinear state space
model is derived from mass and energy balances.
Section 3 is devoted to the de nition of the control
objectives. Section 4 describes and assesses the
worst-case strategy used to incorporate the model
uncertainties. In section 5, the principle of the
scheduled-optimization strategy is presented and
some results are discussed. Finally, conclusions are
drawn in section 6.

2. PROCESS DESCRIPTION AND
MODELLING

The reactor depicted in gure 1 contains the reac-
tant (monomer) and the product (polymer) just
mixed with water. The solution is continuously
stirred, and its temperature is adjusted by feeding
the jacket with hot and cold water. Two indepen-
dent valves are regulated by a split range con-
troller (low-level control of the jacket temperature
TJ). The main process characteristics are:

• the process is of the bulk type, i.e., the
solution consists of pure monomer and water,
no other agent or solvent is added,

• a homogeneous mixture is considered, i.e.,
the monomer is miscible with its polymer,

• the reaction kinetics is based on a free-radical
mechanism, i.e., intermediate, active radi-
cals, generated from a monomer unit and
a catalyst (initiator), grow or propagate by
addition of monomer units, then terminate
into polymer chains.

In this process, the viscosity of the mix causes
poor heat transfer characteristics within the solu-
tion and with the jacket (due to polymer deposits
on the reactor wall).
A particular phenomenon, well known as the gel

e ect may cause, if ignored, poor properties of the
nal product or very low conversion. In fact, when

the monomer conversion is su cient, the termi-
nation reactions become di usion-controlled, i.e.,
large free-radical chains terminate hardly, whereas
the propagation phenomenon accelerates. A natu-
ral counteraction consists in heating the solution.
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Fig. 1. Polymerization reactor: equipment and
low-level control.

The process objectives are mainly concerned with
nal-product quality (speci c physical proper-

ties), process performance (conversion percentage
and/or batch time), safety (temperature limita-
tions). The disturbances (model uncertainties) af-
fecting the process behaviour are of several types:
wrong initial conditions (e.g., initiator), varying
coe cients due to impurities or polymer deposits
(heat exchange between the metal wall and the
solution, initiator e ciency), poor accuracy when
identifying the gel e ect. Only temperature mea-
surements are available at su cient rate and re-
liable, whereas the polymer properties are accu-
rately measured at the end of the batch only.

IFAC - 940 - ADCHEM 2006



De ning Ri and Pi the molar concentration of the
free-radical and the polymer species, respectively,
the general kth noncentered moments are:

k =

∞∑
i=1

ikRi (1a)

k =

∞∑
i=1

ikPi. (1b)

With λ = [ 0 1 2]
T and µ = [ 0 1 2]

T ,
mass balances expressed in terms of the rst three
noncentered moments lead to the following set of
di erential-algebraic equations (DAEs):

dξ1

dt
= f1(ξ1; θ1) (2a)

g1(λ, ξ1; θ1) = 0 (2b)

ξ1(0) = ξ1;0, (2c)

where:

• ξ1 =
[
cM I (µT V )

]T
, cM is the monomer

conversion factor, I is the initiator molar
concentration, V is the sum of the monomer
and polymer volumes,

• ξ1;0 = [0 I0 0 0 0]T , I0 is the initial molar
concentration of the initiator,

• θ1 is the parameter vector, related to the
reaction rates.

Due to the faster dynamics of the free-radical
species, the quasi-steady state assumption (QSSA)
holds for the free-radical chains, leading to the
purely algebraic equations (2b).

Another set of equations derives from thermody-
namic balances between the physical components
of the reactor. According to (Mourikas, 1998) and
the references therein, one can assume that 1)
the temperatures of the metal wall and of the
solution are uniform (e cient stirring); the sensor
for the solution temperature is modelled by a rst-
order system 2) as the heat exchange coe cient
between the jacket and the metal wall highly de-
pends on the jacket temperature distribution, the
jacket is discretized into four zones where the heat
exchange parameters are lumped. Expressing the
variations of the internal energy as the net amount
of heat transfer leads to ordinary di erential equa-
tions (ODEs) for variables TR (reacting solution),
TM (metal wall), TJ;k, k = 1..4 (jacket zones) and
TS (sensor).

dξ2

dt
= f2(ξ2, F w; θ2) (3a)

ξ2(0) = ξ2;0, (3b)

where:

• ξ2 = [TR TJ;1 TJ;2 TJ;3 TJ;4 TS TM ]
T
,

• ξ2;0;i = 300 K, i = 1..7,
• F w is the two-component vector of hot and

cold water ow rates,
• θ2, the parameter vector, contains the heat

exchange and speci c heat coe cients, which
are complex functions of the temperature.

One element of θ2, the heat exchange coe cient
between the metal wall and the solution, noted
hms, can vary during the batch or batchwise due
to accumulation of impurities (fouling).

A deterministic law, which describes the ter-
mination rate coe cient, is de ned as follows
(Mourikas, 1998):

kt = kt0 gt, (4a)

gt = fgel (TR, 0, cM ; A) , (4b)

where kt and kt0 are the real and low-conversion
termination rate coe cients, respectively, 0, ac-
cording to (1a), is the total concentration in the
free-radical species, A is a scalar parameter which
accounts here for the inaccuracy when identifying
the gel e ect. A can vary between two bounds
(lower and upper).

Assembling equations (2) and (3), and augment-
ing them with one variable, named η, and one
equation accounting for the low-level control al-
lows to rede ne a new, complete system:

dx

dt
= f (x, u; p), (5a)

x(0) = x0, (5b)

where:

• xT =
[
ξT

1 ξT
2 η

]
, xT

0 =
[
ξT

1 ξT
2 0

]
,

• u is the jacket temperature setpoint T
sp
J ,

• p = [ph pg]
T accounts for the two aforemen-

tioned model uncertainties, i.e., ph is such
that the heat exchange coe cient between
the metal wall and the solution hreal

ms =
hnom

ms (1 + ph), pg a ects the model of the gel
e ect through parameter A in relation (4b)
as Areal = Anom(1 + pg).

3. CONTROL OBJECTIVES

The control objective consists of a trade-o be-
tween several end-of-batch properties related to
product quality and quantity. As in (Thomas and
Kiparissides, 1984) and (Mourikas, 1998; Kiparis-
sides et al., 2002), a terminal cost Φ(x(tf )) is
de ned as follows:
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Φ (x(tf )) = ε2cM
+ ε2Mn + ε2Mw (6a)

εcM
=

(
1

cM (tf )

cMd

)
(6b)

εMn =

(
1

Mn(tf )

Mnd

)
(6c)

εMw =

(
1

Mw(tf )

Mwd

)
. (6d)

In expressions (6), cM (t) is the conversion fac-
tor, Mn(t) and Mw(t) are the number average

molecular weight and the weight average molecular

weight, respectively:

Mn(t) = MW
1(t)

0(t)
(7a)

Mw(t) = MW
2(t)

1(t)
, (7b)

where MW is the molar weight of the monomer.
Mn(t) is exactly the mean length of the polymer
chains, whereas Mw(t) encompasses the length
and the dispersion of the polymer chains. In ex-
pressions (6), cMd, Mnd and Mwd are the target
(or desired) values.
Generally, a dynamic optimization problem is
stated as follows: given the desired values cMd,
Mnd and Mwd, nd the input pro le u(t) which
minimizes Φ(x(tf )), while satisfying the system
constraints (5), input constraints, path and termi-
nal constraints. In the following, the dynamic op-
timization problem is solved using a direct single-
shooting method, i.e., the input u(t) is parameter-
ized with N linear segments and box constraints
apply on the input only. On the other hand, it
is considered that the constant input of 337 K is
optimal in the nominal case (p = 0) for a batch
of 120 min.

4. ROBUST WORST-CASE STRATEGIES

In a standard worst-case strategy, one solves an
optimization problem, which accounts for the
model uncertainty. In our case, it is assumed that
the gel e ect is unknown (with no loss of gen-
erality, pg is between 0.0 and 0.05). Due to the
structure of the cost function (a sum of square
deviations from target values), the optimization
problem is of type min-max:

min
u(t)

max
pg

Φ(x(tf )), (8)

subject to the system constraints (5) and subject
to input and disturbance bounds, umin ≤ u ≤
umax and 0.0 ≤ pg ≤ 0.05 respectively.

In the pure open-loop variant, the minimization
is performed using the input pro le only. Figure

2 shows the evolution of the terminal cost, as
a function of the gel e ect parameter pg, either
in the nominal design (i.e., no uncertainty is ac-
counted for, which leads to a classical open-loop
optimization) or in the worst-case design. It is
noted that 1) the decrease in the terminal cost is
signi cant when applying the worst-case input for
higher values of pg 2) the worst-case input yields
some degradation for lower values of pg, however
not very signi cant. Robustness of the strategy
is also exhibited with respect to perturbations in
the heat transfer. In regards of this conservative
variant, another variant is of major interest, which
uses an internal feedback controller for immedi-
ate disturbance rejection (whose parameters may
also be optimized). However, the rejection of the
(residual) gel e ect requires a positive reaction,
which is not compatible when dealing with the
heat exchange disturbance.
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Fig. 2. Terminal cost corresponding to opti-
mal open-loop input. No heat exchange
disturbance: nominal (dotted) and worst-
case (solid) design ; heat exchange distur-
bance: nominal (dash-dotted) and worst-case
(dashed) design.

5. SCHEDULED-OPTIMIZATION STRATEGY

This strategy lies on the principle of estimation-
optimization, i.e., the uncertain parameters are es-
timated on line and a new trajectory is calculated
using the adapted model. In our investigation, we
consider that the batch preparation is ideal, i.e.,
the initial conditions are known. The algorithm is
designed to deal e ciently with two disturbances
in the same batch, which are in the heat exchange
and in the gel e ect and both vary batchwise
only. In fact, the gel e ect exhibits only when
the monomer conversion is su cient whereas the
heat exchange has an impact during the whole
batch, especially at the beginning where the in-
put contains su cient excitation (strong heating).
Therefore, decoupled, reliable estimation can be
achieved, according to the following output least-
square error problem (9).

min
p∈P

∫ tEOT

t0

(y(τ) ym(τ))2 dτ, (9)
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subject to system constraints:

ẋ = f (x, u; p), (10a)

x(t0) = x0, (10b)

y = h(x, u), (10c)

where:

• t0 is the initial time of the measurement se-
quence and tEOT is the estimation-optimization
time (last time in the measurement se-
quence),

• y(t) and ym(t) are the model and measured
solution temperatures at time t, respectively.

Additionally, a lower bound on the parameter
variance 2

p is given by the inverse of the (scalar)
Fisher information matrix and is approximated as
follows (Walter and Pronzato, 1997):

2
p =

2
y∫ tEOT

t0

((
∂h
∂p

)
(τ)

)2

dτ

(11)

where:

• 2
y is the variance of the temperature mea-

surements,
• ∂h

∂p
is the rst-order sensitivity function of

the temperature variable with respect to the
parameter.

The heat exchange coe cient is estimated once
at time noted the (t0 = 0 and tEOT = the). The
gel e ect is estimated at any time tgel where the
solution temperature deviates su ciently from
the most recently-calculated optimal trajectory
(t0 = the and tEOT = tgel). After each estimation
(at time tEOT ), a new trajectory is calculated by
solving problem (12).

min
u(t)

Φ(x(tf )), (12)

subject to system and input constraints :

ẋ = f (x, u; pest), (13a)

x(0) = x0, (13b)

u(t) ∈ [umin, umax]. (13c)

An illustrative experiment is performed, under the
following operating conditions:

• model uncertainties: ph = 0.5, pg = 0.05,
• measurements of the solution temperature

are available every 0.1 min and are a ected
by white Gaussian noise, with zero mean and
0.033 K standard deviation (maximum error:
0.1 K),

• the estimation-optimization task is performed
at time the = 10 min, accounting for the
variation of the heat exchange,
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Fig. 3. Scheduled-optimization strategy: illustra-
tion

• the estimation-optimization task is performed
at time tgel where a deviation of 2 times the
maximum error is detected, i.e., 0.2 K.

Figure 3 illustrates the experiment and calls for
the following comments:

• in 10 min, su cient information is available
from the real temperature which deviates
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sensitively from the optimal temperature tra-
jectory calculated o line (3(a)),

• at time t = 10 min, the heat exchange co-
e cient is estimated and the state vector is
obtained by simulation from the known ini-
tial conditions, then new optimal trajectories
are calculated based on the adapted model
(3(b)),

• at time t = 66.6 min, the solution temper-
ature deviates sensitively from the optimal
trajectory (3(c)), which is attributed to the
gel e ect mismatch,

• the gel e ect coe cient is estimated and,
again, the state vector is obtained by sim-
ulation, then the new optimal trajectories
are calculated based on the adapted model
(3(d)),

• from time t = 66.6 min on, no more devia-
tions above the threshold are detected.

In this simple experiment, satisfactory end-of-
batch performance is achieved (the terminal cost
is 0.33 10 3), as well as accurate estimation
results, such as:

• estimation of ph = 0.5, with a standard
deviation of 7 10 4,

• estimation of pg = 0.049, with a standard
deviation of 9 10 4.

If the accuracy of the temperature sensor is lower
(higher measurement error) whereas the threshold
factor is kept unchanged (for example, equal to 2),
a degradation (increase) of the terminal cost can
be expected due to the lag in the detection/re-
optimization. Figure 4 illustrates the evolution of
the detection time and of the terminal cost for
various values of the maximum absolute measure-
ment error (from 0.1 to 2.0 K). Clearly, the ter-
minal cost is kept at reasonable values even when
the detection is very late (time 85 corresponds to
the gel e ect phenomenon).
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Fig. 4. Scheduled optimization-based strategy:
e ect of noise on temperature measurements.

6. CONCLUSION

This paper reports work on the design of con-
trollers for an MMA polymerization reactor,

based on temperature measurements only. The
approach, based on a worst-case analysis (min-
max problem), gives acceptable results in open
loop. However, it is very conservative unless com-
bined with a feedback controller, which cannot
be achieved here since only a positive feedback is
suitable for rejection of the gel e ect disturbance.
Better results are obtained with a scheduled-
optimization strategy, i.e., the model parameters
are adapted on line, and optimal trajectories are
re-evaluated. Provided the reasonable assumption
that the parameters vary batchwise only, a decou-
pled, reliable estimation of these is achieved and
this latter approach gives very satisfactory results.
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