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Abstract: A product design and analysis method is given in this paper to step out of the 

historical data space to search for operating conditions meeting new quality specifications. 

Iterative piecewise PLS modelling is adopted as the implementation framework for this 

purpose. The historical linear PLS model is extended systemically and iteratively to track 

the likely nonlinear property in the newly discovered operating space. Application to an 

injection molding process shows the good feasibility of the proposed method. Copyright 
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1. INTRODUCTION 

Modern industrial processes can be operated over a 

range of operating conditions to produce a wide 

variety of products to meet the rapidly changing 

market. To respond to such frequent product 

changeover, it is necessary to develop methods that 

can quickly and economically find new operating 

conditions to achieve the desired product qualities. 

Existing solutions to this subject can be grouped into 

three categories: theoretical model based, design of 

experiment (DoE) based, and experience based. 

Although theoretical model can cover complete 

operating space, such a model is rarely available due 

to complicated process physical and chemical 

behaviours. Factorial design of experiment can 

provide balanced and representative data covering 

the design space. The number of experiment can be 

still large for a process with large number of 

variables. Experience based methods are highly 

dependent on the knowledge of the experts, and they 

are applicable only to specific processes. 

For a modern industrial process, there exists many 

historical data that can be explored to reveal the 

relationship between the existing product and its 

corresponding operating condition. For a new quality 

specification, it may be useful to start with the 

analysis of the historical data using multivariate 

statistical methods to extract information guiding 

experiments for searching for operating conditions to 

meet the new product requirement. This procedure is 

referred as product design via multivariate analysis. 

The first work was reported by Moteki & Arai (1986), 

where Principal Component Analysis (PCA) is 

combined with a theoretical method for operation 

planning and quality design. More recently, Jaeckle 

& MacGregor (1998) developed a methodology 

based on latent variable techniques using historical 

data to determine a window of process operating 

conditions for new quality specifications. This 

method has been successfully applied to a semi-batch 

emulsion polymerization process and a batch solution 

polymerization process (Jaeckle and MacGregor, 

2000). Industrial case study has been reported by 

Chen & Wang (2000) and Sebzalli & Wang (2001), 

using PCA and clustering method to identify 

operating spaces and operating strategies for desired 

products. A product design method combining PCA 

with genetic programming has also been reported by 
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Lakshminarayanan et al. (2000) to determine new 

operating conditions.  

The above methods are all data-based with a 

common implicit assumption that new product 

quality specifications and operating conditions are 

within the range and structure of historical data. This 

assumption, stated in the work of Jaeckle & 

MacGregor (1998), will limit the applications to a 

certain degree. For many industrial processes, it may 

be common that the process has been only operated 

in the past under certain specific operating conditions, 

which span only a narrow subspace of the entire 

feasible operating space. The operating condition for 

a new quality specification may be highly likely to be 

outside, rather than within, the range of historical 

data. It is thus necessary to develop methods to 

search for operating conditions outside the historical 

envelope. This paper attempts to do so. Section 2 

analyzes possible conditions when stepping out of 

the historical data into new operating space. An 

iterative piecewise PLS modelling method is 

proposed in section 3 as a possible solution to the 

problem. The results are illustrated on an injection 

molding process in section 4. Finally, conclusions are 

drawn in section 5. 

2. PROBLEM ANALYSIS 

Let’s first have a brief review on the key ideas of the 

existing methods. Based on the available historical 

data, the existing methods attempt to build an 

empirical model (
methodM ) between operating 

conditions ( X ) and product quality ( Y ). Under the 

assumption that the relationship between new 

product quality 
des

y  and new operating condition 

new
x  still obey the model (

method
M ), the new 

operating condition is obtained by 
T T T

new des methodMx y  (Jaeckle & MacGregor, 1998).  

For industrial processes, if the historical database 

indeed covers the entire operating space, the existing 

methods can be directly and successfully applied. 

This, however, is a quite ideal case. It is more likely 

that the historical data is only a small sub-set of the 

full scope of products. For this case, we should 

consider the following two scenarios: Scenario A, 

where the historical model (
method

M ) can be 

applicable to new operating space, and Scenario B, 

where the historical model can no longer be 

accurately applied in the new operating space. As the 

behaviour over the entire product range is typically 

nonlinear for many industrial processes, Scenario B 

can widely exist, which is the focus of this paper.  

One-dimensional examples are given in Fig. 1 to 

illustrate the two scenarios, where Fig.1(a) is for 

Scenario A and Fig.1(b) is for Scenario B. The 

rectangle represents the historical operating region; 

solid line is the true model (
*

f ) over the entire 

operating space; the dashed line is the model (
0

f )

derived from the limited historical data. Generally, 

the true model, i.e., the global model, is nonlinear; 

while the historical model, i.e., the local model, may 

be linear for most industrial processes over a narrow 

operating space, as shown in Fig. 1(b).  
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Fig. 1. Illustration of two scenarios in discovering 

new operating space 

(a) Scenario A; (b) Scenario B. 

For Scenario A, the local model can be directly 

applied to new operating space. But for Scenario B, 

the operating condition ( (1)

new
x ) obtained from the 

historical model (
0

f ) result in the actual quality 

( (1)y ), rather than the desired quality (
des

y ). To find 

the desired operating condition ( *x ), relationship 

between product qualities and operating conditions in 

the new operating space is necessary. Product design 

in this case can be viewed as a coupled procedure of 

model updating. The challenge in such model 

updating lies in that, there is no data available in the 

unknown operating space. New experiments need to 

be designed in searching for the desired operating 

condition quickly and economically. New model in 

the desired local operating space can be typically 

represented by a linear model; a procedure needs to 

be developed for obtaining such a model to track the 

globally nonlinear process behaviour.  
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Based on the above analysis, a strategy is proposed in 

the next section to migrate the historical model to 

new operating space in the frame of PLS modelling 

for the aforementioned product design issue. 

3. METHODOLOGY 

In the following, we assume that, (1) a set of 

historical data is available, consisting of existing 

product quality (Y) and the corresponding settings on 

all manipulated process variables (X); (2) X and Y 

have been mean-centred and scaled; (3) a PLS model, 

introduced in section 3.1, has been built on X and Y, 

which can represent the relationship between X and 

Y in the historical data space; (4) new quality 

specification is feasible for the process, satisfying all 

physical constraints; (5) In the entire operating space 

of the process, the relationship between operating 

conditions and qualities changes mildly and 

continuously. 

3.1 PLS

Partial Least Squares (PLS) is a popular regression 

method that can project high dimensional correlated 

process data down to a few number of latent 

variables and then model the latent variables by one-

dimensional linear regression. It had many successful 

applications in process monitoring, fault detection 

and diagnosis, quality prediction, product design, etc. 

Mathematically, PLS is formulated by an outer 

relationship in X and Y (Eq.1) and an inner 

relationship between X and Y (Eq.2), 

T T

a a

a

T T

a a

a

X T P E E

Y U Q F F

t p

u q
                        (1) 

/

a a a

T T

a a a a a

b r

b

u t

u t t t
                                         (2) 

( 1, , )a A

where { , }
a a

t u  is a pair of latent variables in X and Y 

spaces; { , }
a a

p q  are the corresponding loading 

matrices; T , U , P  and Q  are in the matrix form; E ,

F  and r  are model residuals; a is the index of latent 

variable; and A is the number of latent variables 

retained. The detailed PLS algorithm can be found in 

literature (Geladi and Kowalski, 1986; Höskuldsson, 

1988). 

3.2 Piecewise regression 

Piecewise regression is a popular nonlinear 

regression method, where linear regression models 

over different regions are lumped together to 

approximate a globally nonlinear model. The 

simplest piecewise-regression model that joins two 

straight lines sharply at the changepoint is formulated 

as,

1 1

2 2

( , )

( , )

f x x
y

f x x
                        (3) 

where the model parameters  and the changepoint 

 are typically unknown and must be estimated. For 

details on piecewise regression, one can refer to the 

literature (Seber and Wild, 1989). 

3.3 Iterative piecewise PLS method 

For easy understanding, we shall first illustrate the 

iterative piecewise regression method using the one-

dimensional example of Fig. 1(b). The first thing is 

to check the validity of the old model in a new 

operating space, where new experiment is 

unavoidably needed. With the assumptions, the 

operating condition of the first new experimental trial 

can be calculated by the historical model (
0

f ), e.g., 
(1) 1

0
( )new desx f y , as illustrated in Fig. 2, where the 

desired quality data and all new experimental data in 

future are mean-centred and scaled by the same 

normalization parameters obtained from historical 

data. The actual quality value will be (1) (1)

*
( )newy f x ,

rather than 
desy . If the difference (1)

des
y y  is 

beyond the tolerance limit, that is, the old model is 

no longer valid for new data (1) (1)( , )newx y , piecewise 

regression can be performed here for modelling the 

relationship between operating conditions and 

qualities in the expanded operating space.  

To do so, the changepoint and parameters of the new 

linear model have to be determined. With the 

assumption that the historical local model has 

reasonable performance for the historical data, and 

the newly obtained data that does not obey the 

historical model, the “boundary” point 
1

0
( ( ), )b b bx f y y  can be chosen as the 

changepoint between the historical model 
0
( )f x  and 

a new linear model 
1
( )f x , where by  stands for the 

closest quality data in the historical envelope to the 

desired quality. The piecewise model that joins the 

above two models is formulated as, 
0

0

1

1

( )

( )

f x x R
y

f x x R
                         (4) 

where 0R  is the historical data space; and 1R  is the 

new data space, e.g. 0 [ , ]b bR x x  and 1 [ , ]bR x

for the example of Fig. 2. The linear model 
1
( )f x

can be roughly determined by the changepoint 

( , )b bx y  and new experimental data (1) (1)( , )
new

x y .

Although it is impossible to ensure the confidence of 

the new model derived only from the two data points 

from the statistical point of view, it can still be used 

to provide the right direction in searching for the 

desired operating condition from the application 

point of view, supposed that the new experimental 

data is clean and informative.  

After the first experimental trial, there are two 

possible results in terms of the newly obtained 

quality data (1)y . For case I, as illustrated in Fig. 2, 
(1)y  is still smaller than the desired value, indicating 

that the optimal operating condition is still outside 

the newly explored space. Further experimental trial 
(2) (2)( , )new newx y  is needed in the unknown space based on 
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the local model 1f , and a three-piece regression 

model will be derived with the new changepoint 
(1) (1)( , )
new

x y  as,
0

0

1

1

2

2

( )

( )

( )

f x x R

y f x x R

f x x R

,                        (5)  

where 0R = [ , ]b bx x , 1R (1)[ , ]b newx x  and 2R
(1)[ , ]
new

x  for the example of Fig. 2.  

For case II, as illustrated in Fig. 3, (1)y  is larger than 

the desired value. In this case, we should search for 

the desired operating condition within the newly 

explored operating space. Similarly, a new 

experimental data (2) (2)( , )new newx y is obtained based on 

the model 1f . Then, the local model 
1
( )f x  will be 

replaced by two sub local models as,  
0

0

02

02

21

21

( )

( )

( )

f x x R

y f x x R

f x x R

,                        (6) 

where 0 [ , ]
b b

R x x , 02 (2)[ , ]
b new

R x x  and 
21 (2) (1)[ , ]

new new
R x x  for the example of Fig. 3. The new 

linear models 02f  and 21f  are determined by the data 

{ ( , )b bx y (2) (2), ( , )new newx y } and { (1) (1)( , )new newx y
(2) (2), ( , )new newx y }, respectively.

The above piecewise regression modelling can be 

repeated further until the updated process model can 

approach the true relationship around the desired 

operating condition ( *x ).
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Fig. 2. Illustration of iterative piecewise regression 

modelling (Case I). 

The above iterative piecewise modelling is simple 

and easy to be implemented in the one-dimensional 

case. For high dimensional and highly correlated 

industrial data, the above procedures can also be 

implemented with the aid of PLS modelling. In the 

implementation, the outer relationships of the 

historical PLS model will be kept unchanged, only 

the inner relationship is updated to track the 

nonlinearity in the expanded operating space, where 

piecewise regression is performed in each pair of 

latent variables { , } ( 1, , )a a a At u . This is feasible 

as discussed by Qin & McAvoy (1992) in their 

nonlinear PLS method, where neural network is used 

to approximate the nonlinear inner relationship and 

the outer relationships are kept in linear structure to 

attain the robust generalization property.
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Fig.3. Illustration of iterative piecewise regression 

modelling (Case II). 

The proposed iterative piecewise PLS modelling can 

be summarized as below.  

Step I: Use the historical PLS model to get a new 

operating condition ( (1)

newx ), the corresponding 

quality data ( (1)
y ), and the latent variable scores 

(1)

new
t  and (1)

new
u , as shown in Table 1. 

Step II: Keep the outer relationship unchanged, 

piecewise updating the inner relationship to 

track the nonlinearity in the expanded operating 

space similar to Eq.(5) or Eq.(6). 

Step III: Repeat step I & II using the historical PLS 

outer model and the updated inner model until 

achieving the desired operating conditions and 

quality.

Based on the updated nonlinear PLS model over the 

expanded operating space, the existing product 
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design methods can be applied to find the feasible 

operating conditions for new quality specifications, 

as illustrated in the next section. 

Table 1. Procedures in the first step of iterative 

piecewise PLS modelling method 

Historical PLS model parameters:  

Outer model:  P0 and W0 for X; 

Q0 and C0 for Y  

Inner model:  B0 between T and U

Step I of recursive piecewise PLS method: 

(1) 
0des desCu y ;

(2) (1) 1

0
( )des Bt u ;

(3) (1) (1)

0

T

new
Px t ;

(4) Modify (1)

new
x  to satisfy physical constraints; 

(5) Do experiment under (1)

newx  to get quality data 

(1)
y ;

(6) (1) (1)

0new new
Wt x  and (1) (1)

0new
Cu y  , { (1)

new
t , (1)

new
u }

for step II. 

4. ILLUSTRATION 

The proposed iterative piecewise PLS modelling 

method for product design is applied to an injection 

molding process to demonstrate its feasibility and 

effectiveness.  

Injection molding process can be operated over a 

wide range of operating conditions. For the machine 

in our lab, when processing high-density 

polyethylene (HDPE), the normal settings of Packing 

Pressure (P.P.), Barrel Temperature (B.T.) and Mold 

Temperatures (M.T.) can be within the ranges of 

150bar ~ 450bar, 180 ºC ~ 220 ºC, and 15 ºC ~ 55 ºC, 

respectively. The relationship between these settings 

and dimensional qualities such as part weight and 

length can be accurately described by the first pair of 

PLS latent variables, as detailed in the authors’ 

previous work (Lu & Gao, 2005). It is clearly 

nonlinear over the entire operating space, as shown 

in Fig. 4.  

To illustrate the proposed method, data from 9 

different operating conditions are collected to form 

the “historical data”, as shown in Table 2, where the 

ranges of product weight and length are 23.36g ~ 

27.41g and 116.67cm ~ 117.27cm, respectively. The 

linear PLS model derived from these historical data 

have good performance in quality prediction, as 

shown in Fig. 5. A new product quality specification, 

weight= 27.86g  and length= 117.52cm , is required 

now, which is beyond the range of historical products, 

but achievable on the machine. The results of the 

proposed iterative piecewise PLS method are shown 

in Fig. 6 and Table 2, where the method of Jaeckle & 

MacGregor (1998) is adopted to invert the PLS 

model to find the corresponding operating conditions. 

From Fig. 6, the final PLS model has three-piece 

inner relationships (
0

B ,
1

B , and 
2

B ),  and the 

desired operating conditions for the new quality 

setting can be achieved by the third inner model (B2).

Only two trials are conducted by the proposed 

method in searching for the right operating condition 

to achieve the desired product qualities. This 

obviously reduces the effort and time in designing 

new products. 

-3 -2 -1 0 1 2 3
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u
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Fig.4. Nonlinear relationship illustration by the first 

pair of PLS latent variables over the entire 

operating space. 
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Fig. 5. Illustration of goodness of the historical linear 

PLS model in the historical operating space. 

(a) Linear inner relationship;  

(b) Linear outer relationship in Y. 
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Fig. 6. Iterative piecewise PLS modelling of the inner 

relationship on the first pair of latent variables. 

5. CONCLUSION 

Analysis on the product design into unknown 

operating space has been given in the paper. An 

iterative piecewise PLS modelling method has been 

adopted for the above purpose. The application on an 

injection molding process has demonstrated good 

feasibility and effectiveness of the proposed method.   
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Table 2. Operating conditions, scores of latent variables and quality measurements for historical and new 

experimental data.

Operating conditions 

(P.P., B.T., M.T.) 

PLS scores 

(t1, u1) 

quality measurements 

(Weight, Length) 

Historical Data

   150   180    15 

   150   180    35 

   150   180    55 

   300   200    35 

   300   200    55 

   120   220    15 

   450   220    15 

   150   220    35 

   450   220    35 

   -0.59   -0.46 

   -1.32   -0.68 

   -2.30   -1.40 

    0.66    0.06 

   -0.23   -0.90 

   -1.49   -1.16 

    1.53    0.75 

   -1.99   -1.57 

    0.80   -0.06 

   26.86  116.96 

   26.71  116.93 

   26.48  116.69 

   27.00  117.15 

   26.65  116.85 

   26.54  116.78 

   27.41  117.27 

   26.36  116.67 

   27.03  117.07 

New Experimental Data

(1)   450   189    15 

(2)   450   193    25   

(3)   440   196    32 

  2.58   3.44 

  1.96   2.42 

  1.91   1.91 

  28.17  117.70 

  27.94  117.56 

  27.86  117.52  
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