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Abstract: A distributed model predictive control (DMPC) framework is proposed. The 

physical plant structure and the plant mathematical model are used to partition the control 

duties over self-sufficient estimation and control nodes. Linear models and local 

measurements at the nodes are used to estimate the relevant plant states. This information 

is then used in the model predictive control calculations. Communication among relevant 

nodes during estimation and control calculations provides improvement over the 

performance of completely decentralized controllers. The DMPC framework is 

demonstrated for the level control of an interacting four-tank system. The performance of 

the DMPC system for disturbance rejection is compared with other control 

configurations. The results indicate that the performance of the proposed framework 

provides significant improvement over completely decentralized MPC controllers, and 

approaches the performance of a fully centralized design. Copyright © 2006 IFAC

Keywords: Distributed decentralized estimation and control, model based control, 

network control, plantwide control. 

1. INTRODUCTION 

Efficient plantwide control of chemical processing 

plants provides a significant economic advantage by 

enabling closer operation to optimization constraints, 

decreasing the number of shut-downs and by 

reducing the amount of off-specification products. 

Efficient control systems can also provide 

environmental and operational safety for these 

chemical plants. 

Control systems in typical modern chemical plants 

are built in a hierarchical structure, where a large 

number of digital PI, PID and other simple 

controllers enable stable operation of most unit 

operations. These controllers are then connected to 

multivariate systems spanning several unit operations 

to control the important quality variables or to 

achieve more sophisticated tasks such as waste 

minimization, economic optimization or production 

scheduling as shown in figure 1 (Skogestad, 2004). 

The information flow in these hierarchical structures 

is in a vertical direction and the systems at the same 

level are not aware of the existence of their 

neighbors even though they may be interacting.   

The objective of this paper is to develop a framework 

for a horizontal connection among the different 

control systems in a chemical plant at the 

multivariate control level. The industry standard for 

multivariate control is model predictive control 

(MPC) and the proposed framework provides a 

communication structure for estimation and control 

among different distributed MPC applications.       

Decentralized estimation and control problems have 

attracted attention from several different fields. The 

Control of vehicle formations or a group of robots in 

mechanical or aerospace engineering, control of 

power grids in electrical engineering and 

coordination of wireless systems in computer science 

are examples of these problems. Achievements, 

especially in the field of multivariate estimation and 

control, include the development of parallel partially 

decentralized controllers (Siljak, 1991). Multi-level 

hierarchical control systems have been designed 

based on decomposition and coordination strategies 

(Findeisen et al., 1980). A fully distributed 

decentralized estimation and control structure 

(DDEC) to achieve the same performance of a 

centralized algorithm under certain conditions have 

also been developed (Mutambara, 1998). This 

method has been successfully applied to a chemical 

engineering plantwide control problem for a state-

feedback control law (Vadigepalli and Doyle III, 

2003). Distributed approaches to MPC applications 

have also been investigated (Jia and Krogh, 2001). 

However, these approaches involved assumptions on 

the worst-case interactions to design a stabilizing 

hierarchical control strategy.  

In the present study, a nodal estimation network is 

designed as an extension on the scalable DDEC 

methodology of Mutambara (1998), however the 

simple state feedback based control structure of the 

DDEC is replaced with an MPC algorithm. The 

nodal communication of state information in the 

original DDEC methodology is preserved and 

extended to include the communication and renewal 

of MPC results among relevant controllers before the 

implementation of control action. Additional 

requirements regarding model decomposition are 

also considered for the design of a DMPC network. 
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Fig. 1. Hierarchical organization of process control 

systems in chemical plants. 

In the following sections the DDEC methodology is 

revisited and the DMPC framework is outlined. The 

application of the proposed framework to an 

interacting four-tank system is provided. The 

simulation results to compare the efficiency of the 

DMPC algorithm to conventional centralized and 

completely decentralized MPC formulations precede 

a discussion of these results and a conclusion section. 

2. DDEC METHODOLOGY 

The DDEC methodology is based on a linear 

discrete-time plant with nu inputs and ny outputs of 

the following state–space form: 

x(k)= x(k 1)+Bu(k 1)+w(k 1) (1)

y(k)=Hx(k)+v(k) (2)

where ( ) nx k  is the n-dimensional state of 

interest at time k; : n n  is the state transition 

matrix from time (k 1) to k; ( ) un
u k  and 

: unnB  are the input vector and matrix, 

respectively; ( ) yn
y k  is the measurements 

vector at time k; : ynnH is the observation 

matrix; and, w(k)~N(0,Q) and v(k)~N(0,R) are the 

associated process and measurement noise vectors, 

respectively, and are modelled as uncorrelated, zero 

mean sequences with covariance matrices Q and R,

respectively.  

2.1 Model Decomposition 

The plant model given in (1) and (2) is partitioned 

according to either physical structure or based on an 

analysis of the mathematical model. At this stage the 

number of DDEC nodes is determined along with the 

allocation of measurements and control inputs among 

different nodes. Even though two nodes can share 

measurements, a control input cannot be assigned to 

more than a single node. The number of nodes should 

also be chosen carefully to evenly distribute the 

computational requirements and the communication 

load due to overlapping states. Linear 

transformations Ti for each node i are then designed 

to obtain the local state transition and observations 

given by: 

xi(k)= ixi(k 1)+Biui(k 1)+wi(k 1) (3)

yi(k)=Cixi(k)+vi(k) (4)

where ui(k) are the inputs affecting the local states. i

is related to the global state transition matrix (k) as 

i=Ti (k)Ti
†, where Ti

† is the generalized inverse of 

Ti. The local state vector at node i, xi(k), is related to 

the global state vector x(k) by xi(k)=Tix(k). 

2.2 Distributed Prediction and Estimation 

The prediction and estimation calculations at every 

time step are done according to the distributed and 

decentralized Kalman filter (DDKF). The state xi(k)

at node i, is predicted according to: 

( 1) ( 1 1) ( 1)i i i i ix k k x k k B u k (5)

Pi(k |k 1)= iPi(k 1|k 1) i
T+Qi (6)

where Qi and Ri represent the local covariance 

matrices of process and measurement noise, 

respectively. The estimation step follows in three 

stages: (i) local estimation, (ii) internodal 

communication and (iii) assimilation to produce a 

global estimate. The Local covariance and state 

estimates are computed from local measurements as 

follows: 

† †( ( )) [ ]T

i i i i iP k y k C R C (7)

†( ( )) ( ( ))[ ] ( )T
i i i i i i ix k y k P k y k C R y k (8)

The relevant subset of local estimates of the state and 

prediction error covariances are communicated to 

relevant nodes and the information at each node is 

transformed into the local state subspace. The 

transformed state and covariance estimates are given 

by

† † †( ( )) [ ( ( )) ]T T

i j i j j j j iP k y k T T P k y k T T (9)

†( ( )) ( ( ))i jj i j jx k y k TT x k y k (10)
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The transformed states are assimilated locally to 

produce state and covariance estimates according to: 

1( ) ( )[ ( 1) ( 1)i ii ix k k P k k P k k x k k

                      †

1

( ( )) ( ( ))]
N

ii j j

j

P k y k x k y k
(11)

1 † †

1

( ) [ ( 1) ( ( ))]
N

i i i j

j

P k k P k k P k y k (12)

This combined process of local prediction, inter-

nodal communication and assimilation among N 

nodes produces estimates identical to those obtained 

from an equivalent centralized Kalman filter 

algorithm.  

2.3 Distributed Control 

A nodal control law obtained as a cost minimizing 

control function is given by  

( ) [ ( ) ( )]i ci ri iu k K x k x k k (13)

where ( )rix k is the local state reference, ( )ix k k  is 

the local optimal state estimate, and Kci is the optimal 

control gain computed from the solution to a 

distributed and decentralized backward Riccati 

recursion. The prediction, estimation and control 

stages of the DDEC algorithm are shown in figure 2. 

Fig. 2. Organization of the distributed estimation and 

state-feedback based control in the DDEC 

algorithm. 

3. DMPC FRAMEWORK 

 The DMPC framework relies on a similar model 

decomposition structure as given in (1) to (4). 

However, local models are developed by explicitly 

indicating interactions due to control moves from n
neighboring nodes given as 

1

( ) ( -1) ( -1) ( -1) ( -1)
n

i i i i i j j i

j

x k x k Bu k B u k w k (14)

yi(k)=Cixi(k)+vi(k) (15)

 The DMPC framework also requires “self-

sufficiency” of local subsystems, meaning that every 

subsystem will be able to estimate the local states 

and achieve the local control objectives with the 

measurements and control inputs allocated to that 

node. This translates into the requirement that every 

subsystem will be observable with the allocated 

measurements and controllable with the assigned 

control inputs. “Self-sufficiency” will enable 

successful operation of a node in the case of a failure 

in other nodes or during an intermission in the 

communication structure. In the present study, it is 

assumed that an off-line Kalman filter with 

innovation gain Mi is available at every node prior to 

the start of the algorithm based on the local nodal 

models (14) and (15), and also on the expected 

disturbances. There are no requirements on the 

connectivity of the nodal DMPC network. The states 

of the local models 
ix  are separated into two sets, 

o

ix and no

ix , denoting the overlapping and non-

overlapping components respectively. Moreover, 

every node i has reliability factors 
( )

j

i lr  for any 

overlapping state l of o

ix coming from a relevant 

node j as determined during the design of the local 

Kalman filters. 

3.1 DMPC estimation 

The DMPC algorithm is initiated when a node i

obtains its corresponding measurements yi(k). These 

local measurements are used with the predictions 

from the previous time step ( 1)ix k k  to produce 

local state estimates according to 

( ( )) ( 1) [ ( ) ( 1)]i i ii i i ix k y k x k k M y k C x k k (16)

Subsets of these local state estimates among o

ix  are 

broadcasted to relevant nodes and, in return, external 

state information is received back. The estimate for 

state l sent by a node j to another node i is denoted 

by ( ) ( ( ))
j

i l ix k y k , where l denotes a certain state in o

ix .

A given node i can interact with multiple other nodes 

and the shared states can be completely different or 

have common elements between different 

interconnections. 

After the communication step, the received state 

estimates are weighted and fused together with the 

local estimates at node i, according to the pre-

assigned reliability factors as: 

( ) ( ) ( )

1

( ) ( ( ))
q

j
j

i l i l j i l

j

x k k x k y k r (17)

where q is the number of overlapping nodes for the 

state ( )i lx , including node i itself and the 

corresponding reliability factors for the different 

estimates are related by  
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( )

1

1
q

j

i l

j

r (18)

This step ensures that the information about the 

shared states o

ix is distributed throughout the network. 

In the DDEC scheme, the assimilation step uses the 

inverses of the estimation error covariances to weight 

the information coming from all other nodes. Since 

the DMPC framework is based on an off-line 

suboptimal Kalman filter, inverses of the steady-state 

error covariances can be used as reliability factors for 

the corresponding local estimators. However, 

because of the generality of the DMPC framework in 

terms of the interconnection structure and the 

number of overlapping states, there is no restriction 

on the choice of 
( )

j

i lr besides (18). One potential 

negative aspect of the DMPC estimation scheme is 

the loss of equivalence to an optimal centralized 

estimator, as is the case with the DDEC 

methodology.  

3.2 DMPC prediction and control 

State estimates obtained in the previous section are 

used to initialize the local models (14) and (15). At 

each time step the nodes also receive information 

about the control moves of the neighboring nodes in 

the previous time step. This information is then used 

in the state transition equations (14) to include the 

effects of input interactions by assuming constant 

values throughout the prediction horizon. The 

prediction and control stages are conducted locally at 

each node i, according to the MPC algorithm by 

solving a numerical optimization problem given as 

1

1,

0 1

min
( [ ( ( 1 )

( ) ,..., ( 1 )

iynp
y

t s it

t si i

w y k t k
u k k u m k k

2 2

,

1

( 1))] [ ( )] )
iu

i

n
uref

is t s is

s

y k t w u k t k

              . .s t       low high

i i iu u u

                     low high

i i iu u u
          ( ) 0iu k h k      , 1,..., 1for h m m p

(19)

where s denotes the sth component of a vector, 

( )k t k denotes the t steps ahead prediction using 

the local models, based on information available at 

time k and finally, ref

iy denotes the output reference 

for sample time k.

When a node obtains the solution of the local MPC 

problem, it sends the control moves for the next time 

step to its interacting neighbors before implementing 

it in the actual system. The nodes then use this 

information to update the input interactions in the 

prediction models and repeat the MPC calculations 

with the same initial states. The MPC calculations 

can be repeated for a certain number of iterations or 

based on a convergence criterion. The convergence 

properties of the DMPC algorithm will be reported in 

a subsequent publication. After a satisfactory 

solution is obtained from the MPC calculations, local 

nodes implement the control moves for the current 

time step and the predictions for state information is 

send to the next estimation stage which starts again 

as new measurements are received. 

The prediction and control structure of the DMPC 

framework introduces cooperation for control 

calculations in the nodal network, whereas in the 

DDEC scheme the network only cooperates for state 

estimation and the control calculations are performed 

locally. Even though repeated MPC calculations are 

computationally more cumbersome compared to 

LQG based local controllers, the ability to include 

constraints, and the flexibility in the design of 

controllers considerably improve the performance of 

a DMPC network over a DDEC counterpart. The 

prediction estimation and control stages of the 

DMPC algorithm are depicted in figure 3. 

Fig. 3. Organization of the distributed estimation, 

MPC based control and the inter-nodal 

communication stages in the DMPC framework. 

4. CASE STUDY 

The DMPC framework is applied in a case study 

involving level controls in an interacting four-tank 

system. This problem provides a simple, illustrative 

example for system decomposition and yet has 

challenging dynamic behaviour that can distinguish 

the performance of different control strategies. 

4.1 System Description

The simulated four-tank problem considered here is a 

variant of the experimental system described by 

Gatzke et al. (2000). A schematic of this process is 

shown in figure 4. The system has two inputs (pump 

speeds) which can be manipulated to control the two 

outputs (levels in tanks 3 and 4). The multivariate 

dynamics is created by the cross-recycle streams 

feeding the two different overhead tanks 1 and 2. In 

this case study the dynamics are enriched by adding 

first order lags between the control signals and the 

pump throughput, and the system is simulated based 

on a full nonlinear mass balance model given in 20. 

Bernoulli’s law is used for the flows out of the tanks, 

Ai stands for the cross sectional area, hi for the liquid 

level and ki for the flow factors from tank i. Fin stands 

for the input flows to the overhead tanks, di for the 

flow disturbances, i for the recycle flow ratios, vi for 

actual pump throughput and finally ui for the 

controller output. 
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Fig. 4. Schematic description of the four-tank system. 

                  
1

1 1 1 2 1 1in

dh
A F d v k h

dt

                  
2

2 2 2 1 2 2in

dh
A F d v k h

dt

                  
4

4 2 2 2 4 4

dh
A k h v k h

dt

                  
3

3 1 1 1 3 3

dh
A k h v k h

dt

                  
1

1 1 1

dv
v u

dt

                  
2

2 2 2

dv
v u

dt

(20)

By omitting all information about the flow 

disturbances, the nonlinear model equations with 

specified parameter values can be linearized and 

rearranged to give the following discrete-time system 

with a sampling frequency of 1 s-1. This system will 

serve as the starting centralized model in the DMPC 

framework, corresponding to equations (1) and (2).  

                  
0.89 0.26 0.2 0.03 0 0 0.1 0.01

0 0.34 0 0.08 0 0 0 0.06

0 0 0.37 0 0 0 0.63 0
( 1) ( ) ( )

0 0 0 0.45 0 0 0 0.69

0 0 0.03 0.1 0.82 0.27 0.01 0.1

0 0 0.09 0 0 0.25 0.07 0

x k x k u k

1 0 0 0 0 0
( ) ( )

0 0 0 0 1 0
y k x k

(21)

4.2 Nodal Decomposition

The control objective in the four-tank system is to 

keep the levels at tanks 3 and 4 at the specified 

reference values in the face of flow disturbances. 

This objective and an examination of the rest of the 

process lead to a clear division of the system into two 

physical subsystems with each subsystem containing 

a controlled tank 3 or 4 and their matching overhead 

tanks 1 or 2. The physical separation of the process 

into two subsystems also allocates the measurements 

(tank levels 3 or 4) and the manipulated variables 

corresponding to each controlled tank as well (pump 

speeds 1 or 2).  

The states of the system described in (21) are pre-

arranged for the demonstration of mathematical 

decomposition. The measured states 1 and 5 are the 

focal points for the distribution of states among the 

two subsystems and they are positioned diagonally 

on the two sides of the state transition matrix. This 

arrangement forms a disconnected system, except for 

states 3 and 4, which are shared between the two 

subsystems leading to nodal models given below. 

These models correspond to equations (14) and (15) 

of the DMPC framework. In this distribution node 1 

contains states 1 to 4, output 1 and input 1, whereas 

node 2 contains states 3 to 6, output 2 and input 2. 

This decomposition also satisfies the “self-

sufficiency” requirement for the nodes in a DMPC 

network.   

                  

1 1 1 2

0.89 0.26 0.2 0.03 0.1 0.01

0 0.34 0 0.08 0 0.06
( 1) ( ) ( ) ( )

0 0 0.37 0 0.63 0

0 0 0 0.45 0 0.69

x k x k u k u k

1 1( ) 1 0 0 0 ( )y k x k

(22)

                  

2 2 2 1

0.37 0 0 0 0 0.63

0 0.45 0 0 0.69 0
( 1) ( ) ( ) ( )

0.03 0.1 0.82 0.27 0.1 0.01

0.09 0 0 0.25 0 0.07

x k x k u k u k

2 2( ) 0 0 1 0 ( )y k x k

(23)

4.3 DMPC design

The next stage in the construction of a DMPC 

network is to add the anticipated disturbance and 

noise models on the different subsystems. In this 

case, a single unmeasured disturbance and output 

noise channels are added to both nodes. Kalman 

filters, based on these models are then designed with 

expected covariance values for the process and 

measurement noises.  

The overlapping states between the subsystems were 

determined during the nodal decomposition step, 

however for the DMPC design, the reliability factors 

for these states at each node has to be specified. For 

simplicity, in this case study the reliability of state 

estimation at both nodes are assumed to be the same 

and factors 2

1(3)r , 2

1(4)r , 1

2(3)r , 1

2(4)r  are all taken as 0.5 in 

accordance with (18).  

For the MPC design, upper and lower limits for 

pump speeds are taken as 5 and 0, and only output 

weights of 100 are used in both subsystems. The 

prediction horizons are specified as 8 and the move 

horizons are specified as 3. The DMPC framework 

does not require symmetry for the design of the nodal 

MPC controllers, however similar computational 

loads will create a balanced network and nodal 

communication will proceed without long delays. In 

this case study, the performance of the DMPC 

network is compared to two other control strategies. 

The first one employs a centralized MPC controller 

for the whole system and the second one has two 
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completely decentralized MPC controllers. Both of 

these strategies have the same input constraints, 

output weights, prediction and control horizons as in 

the DMPC design. As a final design parameter, the 

MPC solutions are repeated only once by the DMPC 

nodes. 

4.4 Performance Comparison 

The performance of the DMPC network is compared 

with the centralized and completely decentralized 

MPC controllers in a simulation study using the 

nonlinear four-tank system. Concurrent feed flow 

disturbances were considered in the simulation 

scenarios in the form of 1 and 1.5 m3/s steps for 

disturbances 1 and 2 respectively. Different control 

strategies were compared based on the maximum 

deviations from the set-points, the integral absolute 

errors and the settling times for the two outputs. 

The simulation results are shown in figure 5 and the 

performance measures are listed in table 1. The 

results show that in the present configuration the 

concurrent disturbances effect output 1 more 

profoundly and in return the controllers have more 

difficulty managing this output. According to the 

results, the DMPC formulation outperforms the fully 

decentralized MPC controllers by a large margin. For 

both outputs all three performance measures are in 

favour of the DMPC but for output 1 the difference is 

more pronounced. Comparison of the DMPC 

formulation with the centralized MPC controller 

reveals that the DMPC comes fairly close to the 

performance of the centralized MPC. Moreover, even 

though the overall performance of the centralized 

MPC is better than the DMPC scheme, the DMPC 

has better results for the settling time and IAE for 

output 2. 

The short oscillations in output 1 after the 

disturbance are caused by the distributed state 

estimation due to the initial differences in the state 

estimates for the shared states. The oscillations 

disappear as both estimators converge to the correct 

state estimates. This behaviour is not observed in 

output 2.  

Fig. 5. Dynamic response of the four-tank system to 

concurrent feed flow disturbances. 

Table 1 Performance measures for different control 

formulations

Settling 

time (s) 

Maximum 

Deviation (m) 

IAE 

(m·s) 

Centralized MPC (y1) 90 0.24 6.1 
Centralized MPC (y2) 90 0.37 5.7 
DMPC (y1) 90 0.28 7.5 
DMPC (y2) 70 0.42 5.2 
Decentralized MPC (y1) 110 0.61 16.3 
Decentralized MPC (y2) 90 0.52 9.2 

5. CONCLUSION 

In the present study, a distributed model predictive 

control framework is presented. The methodology is 

demonstrated on a four-tank level control problem. 

The results show that the new methodology performs 

significantly better than a completely decentralized 

set of controllers. In terms of computational 

parallelization, the size of the individual problems is 

reduced by more than 33 % compared to a 

completely centralized formulation. Iterative 

solutions of the DMPC provide feed-forward 

anticipation of the interactions due to control inputs, 

bringing the performance of the DMPC closer to that 

of a completely centralized MPC. In addition, the 

“self-sufficiency” criterion required for the DMPC 

enables the subsystems to stay functional in case of 

failures in other subsystems. With these properties, 

the DMPC framework can be a viable candidate to 

provide a connecting link between existing MPC 

applications in chemical engineering systems. 
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