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Abstract: Block structured models have been used in nonlinear model predictive
control to reduce computational cost. The solution of the nonlinear dynamic
optimization problem has been evaded by inverting the nonlinear element and
solving the resulting linear problem in the past. However, by exploiting the
block structure for sensitivity calculation, the original nonlinear problem can
also be solved at low computational cost, and at the same time this o ers much
greater modeling exibility. This paper deals with dynamic optimization and, in
particular, the e cient calculation of rst order sensitivity information for the
case of multivariable Hammerstein and Uryson systems. In a simulation example
the method is shown to combine low computational cost with the possibility to
signi cantly reduce the losses of optimality compared to the previous methods.
Copyright c©2006 IFAC
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1. INTRODUCTION

Nonlinear model predictive control (NMPC) poses
challenging problems both in modeling and com-
putation. Obtaining nonlinear, dynamic process
models either requires large amounts of identi -
cation data or deep physical insight for rigorous
modeling. Afterwards, the optimization problem
has to be solved within short sampling times re-
quired in closed loop NMPC. Numerous model
reduction techniques have been explored to reduce
the original process model (Marquardt, 2002), or
to totally avoid online optimization (Kadam et

al., 2005).

Block structured models consisting of nonlinear
static and linear dynamic elements have been used
to reduce both the modeling and computation
e orts. Structuring the model in this way leads
to an approximate model, which is inferior in

1 Corresponding author: marquardt@lpt.rwth-aachen.de

prediction quality to a rigorous nonlinear model,
but provides a viable compromise between the
low predictive capabilities of a linear model and
the costly development of a non-structured non-
linear dynamic model. Applications range from
such di erent elds as neuroprothesis, where a
rigorous nonlinear model could not be obtained
(Hunt et al., 1998), to the control of an industrial
C2-splitter (Norquay et al., 1999). For Wiener
(Norquay et al., 1999) and Hammerstein (Zhu and
Seborg, 1994) models tailored solution algorithms
have been developed. They are based on the inver-
sion of the nonlinear element to reduce the origi-
nal nonlinear dynamic optimization problem to a
linear one. We will refer to this method as the ”in-
version based method” in the sequel. To obtain a
unique solution with the inversion based method,
the nonlinearity of the model needs to be bijec-
tive, which is generally not the case. Especially
for the multi-input multi-output (MIMO) case,
this poses restrictions on the model structures. In
particular, the MIMO model structure suggested
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Fig. 1. Block diagram of the HM model.

by Kortmann and Unbehauen (Kortmann and
Unbehauen, 1987) has been used previously and
we will refer to it as the KU model in the sequel.

In contrast to the inversion based method, we
are directly solving the nonlinear dynamic op-
timization problem constrained by block struc-
tured models. Therefore, rst order derivatives of
the objective and constraints with respect to the
degrees of freedom of the dynamic optimization
problem are required. For rigorous dynamic mod-
els the calculation of this sensitivity information
oftentimes dominates the computational cost of
the solution process. We aim at reducing the com-
putational cost by exploiting the block structure
for e cient calculation of sensitivity information.
Our method covers all MIMO Hammerstein as
well as Uryson (Gallman, 1975) models. It allows
the solution of the offline optimal control problem.
State estimation for such models, required for
closed loop control implementation, is the focus
of current research.

2. PROBLEM STATEMENT

The constrained, discrete time optimal control
problem

min
{uk}

Φ({xk}, {uk}) (1a)

s.t. xk = f(x(k 1),u(k 1)) (1b)

0 ≥ g(xk,uk, tk) (1c)

x0,u0 (1d)

k = 1 . . . K (1e)

is given with the objective function Φ( ), the
manipulated variables {uk}, partly measurable
state variables {xk}, inequality constraints g( ),
process model f( ), and initial conditions x0, u0.
By { } we denote discrete time sequences of vari-
ables, while bold symbols denote vector variables.
A function h({xk}) denotes h(x1,x2, ...,xK).
Given the limited computation time available for
NMPC, some form of model reduction is re-
quired for large process models f( ). In this paper
we assume, that f( ) can be approximated by
a discrete time Hammerstein or Uryson model
(Pearson, 1999). Gradient based solution methods
require at least rst order derivatives of the objec-
tive and constraints with respect to the degrees

tm
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Fig. 2. Oversampling example.

of freedom, for which sensitivity equations are
developed in this paper.

To derive the sensitivity equations we rst treat
the single-input single-output (SISO) case for the
sake of simplicity. For this case, we approximate
problem (1) by

min
{uk}

Φ({zk}, {uk}) (2a)

s.t.

dim(a)∑
i=0

ai z(k i) =

dim(b)∑
i=0

bi y(k i) (2b)

yk = N(uk) (2c)

0 ≥ g(zk, uk, tk) (2d)

{z0} = z0, {u0} = u0 (2e)

k = 1 . . . K . (2f)

In problem (2) the reduced process model is de-
ned by the nonlinear static map N( ) : R

1→R
1,

and a linear dynamic process model with gain
normalized to one, which is de ned by a and
b. {uk} and {zk} are the measurable input and
output variables and {yk} is the nonmeasurable
intermediate variable. Φ( ) is the objective func-
tion, g( ) are inequality constraints, and {u0} and
{z0} are sequences of delayed inputs and outputs
at t0 de ning the initial condition of the system.
Note that the di erence between problems (1) and
(2) is a replacement of the original process model
by a reduced model. The objective and inequality
constraints in (2) only contain the measurable
variable {zk} instead of the full state vector {xk}.

We extend the method to the more relevant
MIMO case in Section 3.2. For the MIMO case
several Hammerstein structures have been devel-
oped. In this paper we will use the Hammerstein
model based on deviation dynamics, which is dis-
cussed in detail and compared to the other struc-
tures by Harnischmacher and Marquardt (2005).
This model is the only one to consistently extend
the concept of the Hammerstein model comprising
a nonlinear static map followed by an independent
linear process model to the multi-input single-
output (MISO) case. We will term it HM model in
the sequel. The model consists of a static channel
and n = dim(u) dynamic channels j as depicted
in Figure 1. As this model is similar to Uryson
models (Gallman, 1975), the results for the MISO
case straightforwardly extend to this model class
as well. For the MIMO case, problem (1) is ap-
proximated using the HM model by
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min
{uk}

Φ({zk}, {uk}) (3a)

s.t. zl,k =Nl(uk)+

dim(u)∑
j=1

zl,j,k (3b)

dim(al,j)∑
i=0

al,j,i zl,j,(k i) =

dim(bl,j)∑
i=0

bl,j,i yl,j,(k i) (3c)

yl,j,k = Nl(uk
+ uj,k ej) (3d)

0 ≥ g(zk,uk, tk) (3e)

{zl,0} = Zl,0, {u0} = U0 (3f)

k=1...K, l=1...dim(z), j =1...dim(u). (3g)

In this case, each element of the input and output
sequences {uk} and {zk} is of dimension dim(u)
and dim(z) respectively. N( ) : R

dim(u)→R
dim(z)

is a nonlinear static map of the process and
Nl( ) : R

dim(u) → R
1 denotes the lth component

of N( ). u
k

is a reference value for u, which is
updated at every tk, and uj,k = uj,k u

j,k
is

the deviation thereof in the direction of the unit
vector ej . In this structure the nonlinear element
in each channel j represents the local gain of the
nonlinear map Nl( ) in the direction of ej at uk.
To derive the linear elements, linear SISO systems
Gl,j : R

1 →R
1 are identi ed for all l = 1...dim(u)

and j = 1...dim(z). The parameters al,j and bl,j

are then derived analytically after normalizing the
gain to one just as in the SISO case. g( ) are
inequality constraints, Φ( ) the objective, and U0,
Zl,0 the initial conditions as before.

Model (3b-d) decouples the static response of the
system with respect to its inputs to maintain
the independence of the nonlinear and linear el-
ements. This decoupling is based on the decom-
position of the Taylor expansion of Nl( ). It is
exact, i the second and higher order terms of the

Taylor expansion, e.g. uj1,k uj2,k
∂2Nl(·)

∂uj1∂uj2

∣∣∣
u=u

k

are equal to zero, which is generally not the case.
To meet this condition, we ensure that the in-
put uj,k is di erent from zero for at most one
j for dim(bj∗) 1 intervals by oversampling the
model. The model is sampled at an internal sam-
pling interval of tm, such that tk = tm∑dim(u)

j=1 (dim(bj) 1). The response of the sys-
tem to the input uk is then calculated by sequen-
tially processing the inputs uj . We de ne

ukn
=[u1,k, ..., un,k, u(n+1),(k 1), ..., udim(u),(k 1)]

T (4)

for n = 1...dim(u). The sequential processing is
depicted in Fig. 2 for an example with dim(u)=3,
dim(z) = 1, and dim(bj) = 3 ∀ j. At time tk
the input u1,k is processed and the input is held
constant for the following interval tm. Hence,
for the oversampled model, the input is uk1 for
dim(b1) 1 intervals. u2,k is processed at tk+2 tm
and again the input unchanged in the following
interval tm ensuring a constant input uk2 for
dim(b2) 1 intervals and so on. By oversampling,
the input uk is turned into a sequence of inputs

um for the oversampled model, which will be of
importance for the sensitivity calculation. The
input um to the oversampled model is given by

uj,m=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uj,k 1 ∀ tk≤ tm<tk+

j∑
i=1

(dim(bi) 1) tm

uj,k ∀ tk+

j∑
i=1

(dim(bi) 1) tm≤ tm<tk+1.

(5)

3. SENSITIVITY EQUATIONS FOR
HAMMERSTEIN SYSTEMS

3.1 SISO Case

For the SISO case the sensitivity of zk with respect
to an input uk∗ is straightforwardly calculated
using the chain rule of di erentiation from

∂zk

∂uk∗

=
∂zk

∂yk∗

∂yk∗

∂uk∗

. (6)

As Eq. (2b) is linear in yk, solving the recursion
for zk yields

zk = ξk,k∗(a,b) yk∗ + (a,b, {yk �=k∗},u0,z0), (7)

where ( ) is a polynomial containing all elements
of {yk} but yk∗ and ξk,k∗ is a constant polynomial
of a and b. The rst term of Eq. (6) is therefore

∂zk

∂yk∗

= ξk,k∗(a, b) := const. (8)

The second term of Eq. (6)

∂yk∗

∂uk∗

=
∂N(u)

∂u

∣∣∣∣
u=uk∗

(9)

is just the rst order derivative of the nonlinear
static element N(u) at u = uk∗ .

Due to the structure of the Hammerstein model,
the sensitivity calculation can thus be reduced to
the calculation of one rst order derivative of N( )
and one vector multiplication

∂{zk}

∂uk∗

= ξk∗

∂N(u)

∂u

∣∣∣∣
u=uk∗

(10)

with ξk∗ = [ξ1,k∗ , . . . , ξK,k∗ ].

3.2 MIMO Case

MIMO Hammerstein and Uryson structures gen-
erally consist of parallel branches of MISO or
SISO Hammerstein models. Hence, the sensitiv-
ity calculation is a straight forward extension of
the SISO case. The computational e ort varies
with the respective Hammerstein structure. For
the KU model (Kortmann and Unbehauen, 1987)
only the derivatives of dim(u) scalar functions are
required, while the model based on combined non-
linearities (Eskinat et al., 1991) requires dim(u)
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gradients of the respective nonlinear models. How-
ever, to our knowledge no control application
based on the solution of the nonlinear dynamic
optimization problem has been reported.

Because of the oversampling the sensitivity calcu-
lation for the HM model is a little more complex,
but since it also consists of parallel Hammerstein
channels, the structure of the solution remains the
same. As Eq. (3) contains dim(z) parallel MISO
models, we will only treat the MISO case in this
section and therefore drop the index l of Eq. (3)
for the remainder of this section to ease the no-
tation. Since Eq. (3) consists of parallel branches
of Hammerstein systems, the sensitivity equations
developed in this section are structurally equiva-
lent to the SISO case. In particular Eq. (8) holds
for each of the dynamic channels of Eq. (3c).
We therefore use the following notation for the
remainder of this section:

ξj,k,k∗ :=
∂zj,k

∂yj,k∗

. (11)

The sensitivity of zk with respect to uk∗ is given
by

∂zk

∂uk∗

=
∂zS,k

∂uk∗

+

dim(u)∑
j=1

∂zj,k

∂uk∗

. (12)

The rst term in Eq. (12) contains the sensitivity
of the static channel S of the model, which is
simply

∂zS,k

∂uk∗

=
∂N(u)

∂u

∣∣∣∣
u=uk∗

(13)

and zero for all k �= k

The sensitivity calculation for the dynamic chan-
nels follows the same concept and the same sim-
pli cation as in the SISO case. However as de-
picted in Fig. 2 the input uk∗ is in fact an input

sequence to the oversampled model. ∂N(u)

∂uk∗

∣∣∣
u=ukn

is nonzero for the sequence {uk∗

n
, ...,u(k∗+1)n 1}.

∂zj,k

∂uj,k∗

for the dynamic channels is then given by

∂zn,k

∂uj,k∗
=ξn,k,k∗

∂N(u)

∂uj

∣∣∣∣
uk∗n

ξn,k,(k∗+1)

∂N(u)

∂uj

∣∣∣∣
u(k∗+1)n

(14)
for channel n = j, by

∂zn,k

∂uj,k∗
=ξn,k,(k∗+1)

⎛
⎝∂N(u)

∂uj

∣∣∣∣
u(k∗+1)n

∂N(u)

∂uj

∣∣∣∣
u(k∗+1)(n 1)

⎞
⎠

(15)
for all channels n = 1 . . . j 1, and analogously

∂zn,k

∂uj,k∗
=ξn,k,k∗

⎛
⎝∂N(u)

∂uj

∣∣∣∣
uk∗n

∂N(u)

∂uj

∣∣∣∣
uk∗

(n 1)

⎞
⎠

(16)
for all channels n = j + 1 . . . dim(u).

As in the SISO case, the integration of the sensi-
tivity system for the MISO case can therefore be
reduced to calculation of the 2 dim(u) gradients
of N(u) at uk∗

1
. . . u(k∗+1)dim(u)

and a set of matrix
multiplications

∂{zk}

∂uk∗

=

dim(u)∑
j=1

∂N(u)

∂u

∣∣∣∣
uk∗

j

Ξk∗,j +

dim(u)∑
j=1

∂N(u)

∂u

∣∣∣∣
u(k∗+1)j

Ξ(k∗+1),j ,

(17)

where Ξk∗,j and Ξ(k∗+1),j contain the respective
vectors ξj,k∗ and ξj,(k∗+1) analogously to Eq. (10).

4. COMPARISON WITH COMPETING
METHODS

Directly competing are the inversion based meth-
ods using Wiener or Hammerstein models (Zhu
and Seborg (1994), Norquay et al. (1999)). They
o er slight advantages in computational cost, but
are known to possibly su er from non-uniqueness,
when the nonlinear map is not bijective over the
input space. This severely limits the nonlinear
maps as well as the multivariable structures that
can be used. Further, the objective function of the
linear optimization problem contains the interme-
diate variable of the model as a proxy variable
for either the output or the input to the system.
As these are nonlinearly linked, the solution of
the linear problem generally does not minimize
the original objective. Finally, the inversion based
solution of nonlinear dynamic optimization prob-
lems constrained by Uryson models is not possi-
ble, because intermediate variables yκ of the dif-
ferent channels κ of the Uryson model, which are
independent variables in the linear optimization
problem, are in fact nonlinearly coupled.

The e ciency of the sensitivity calculation for
Hammerstein systems is greatly increased by mak-
ing use of Eq. (10), which does not hold for Wiener
systems. The sensitivity of zk with respect to uk∗

for a SISO Wiener system can be calculated from

∂zk

∂uk∗

=
∂zk

∂yk

∂yk

∂uk∗

. (18)

In this case ∂zk

∂yk
= ∂N(·)

∂y

∣∣∣
y=yk

needs to be evalu-

ated at every tk. Thus, for Wiener systems the
solution of the nonlinear dynamic optimization
problem is computationally much more demand-
ing, because the derivative of the nonlinear map
has to be evaluated on the discretization of the
output instead of the discretization of the input.
When nonlinear maps other than polynomials are
used, the evaluation of the nonlinear map domi-
nates the computational cost (Harnischmacher et

al., 2006).
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5. SIMULATION EXAMPLE

As a simulation example we choose the industri-
ally relevant uid catalytic cracking (FCC) unit,
for which several models exist in the open lit-
erature. We use the model originally developed
by Kurihara and comprehensively discussed by
Denn (1986). This model has been validated and
used for control by Ansari and Tadé (2000). We
will not restate the equations here due to space
limitations. The nomenclature and units used in
the sequel are the same as those of Denn (1986),
where the complete model may be found. Ansari
and Tadé (2000) also state the complete model,
but with some typographical error and a slightly
di erent notation. Detailed process descriptions
can be found in both references. The example
shows, that the solution of the nonlinear dynamic
optimization problem can be performed in very
short time and the increased modeling exibility
leads to signi cant improvements in performance.

5.1 Simulated FCC Unit

The main manipulated variables of the process are
the air owrate Rai and the catalyst circulation
rate Rrc, while the feed rate Rtf and feed temper-
ature Tfp are treated as disturbances. To control
the main quality variable, the cracking severity,
several controlled variables have been explored
due to the complex dynamics of the system. How-
ever the riser outlet temperature Tra is directly
related to the cracking severity and has recently
been used for control (Jia et al., 2003). The control
problem is therefore non-square with manipulated
variables Rai and Rrc and controlled variable Tra.

5.2 Identi cation

The simulated FCC unit is identi ed using two
di erent Hammerstein model structures. For the
inversion based method we use the KU model
(Kortmann and Unbehauen, 1987). Quadratic
functions are used in each of the two channels
of the model. For the proposed method, the HM
model (Harnischmacher and Marquardt, 2005) is
used. Here, the nonlinear map is an arti cial neu-
ral network (ANN) identi ed from steady state
data. For both models fourth order linear elements
are identi ed from step response data.

The FCC process is known to exhibit a two
timescale behavior (Christo des and Daoutidis,
1997). The models identi ed above give a poor
description of the short time scale behavior of
the process and a Uryson model, containing two
dynamic channels for each input, is much more
suitable (Gallman, 1975). As the response on the
fast time scale is close to linear, constant gains
are used in these two channels, while the same
ANN as in the HM model is used in the two long

time scale channels. The long time scale dynamic
behavior of the system is described by rst order
models, while models of third order are identi ed
for the fast time scale channels.

5.3 Open-Loop Optimal Control

The control objective

Φ = (T ra T set)
T (T ra T set)+

∑
Rrc,i (19)

is to be minimized. The time horizon is 1000
intervals tk corresponding to two hours simu-
lation time. The inputs Rai ∈ [390; 420]Mlb

hr
and

Rrc ∈ [40; 42] ton
min

are piecewise constant for 100
intervals tk. T ra = [z50, z100, ..., z1000]

T contains
the model output sampled every 50 intervals. The
set point T set changes from 950◦F to 960◦F at
k = 201. Rrc contains the absolute values of
Rrc as a proxy for process cost. = 10 4 is a
weighting parameter.

For the inversion based method {uk} is given by
the roots of two independent quadratic functions,
i.e. the nonlinear maps of the model. This leads
to four possible solutions. In our case, however,
the nonlinear functions are monotonous on the
respective input spaces. While this leads to a
poor description of the process nonlinearity in
a certain section of the input space with steady
state errors of up to 13◦F, it follows that only
one of the four solutions lies in the input space
and the solution of the optimization problem is
therefore unique. Such behavior of the nonlinear
map cannot be expected in general and would
pose severe restrictions on the nonlinear map.

5.4 Discussion

The nonlinear optimization problems with both
the Hammerstein and Uryson models are solved in
less than 1 second using MATLAB on a 1.5 GHz
PC. Such computation times are well acceptable
for NMPC applications in the process industry.

Simulation results for the manipulated variable
trajectories obtained by using the di erent models
are depicted in Fig. 3, which as a reference also
contains the result obtained by solving the original
dynamic optimization problem with the original
model. This solution clearly outperforms all ap-
proximate solutions. It should be noted though,
that for this simulation example, there is abso-
lutely no plant model mismatch when the original
model is used. The inversion based method, in
contrast, performs worst. We compare the perfor-
mance by the objective values obtained by sim-
ulating the original model with the inputs {uk}
calculated with the four di erent models. Using
the HM model leads to a slight improvement of
15% in the original objective compared to the
inversion based method. The weak performance of
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both methods is mainly due to insu cient model-
ing of the process dynamics.

Solving the nonlinear dynamic optimization prob-
lem constrained by a Uryson model leads to a
reduction of over 80% in the original objective
compared to the inversion based method. Further
performance increases can be achieved by using a
rigorous steady state model instead of the ANN.
This leads to a reduction of 85% in the original
objective. However this slight additional improve-
ment comes at a cost of 160 seconds of compu-
tation time making this model computationally
unattractive. For comparison the improvement in
objective for the original model is 94% after 270
seconds of computation time.

6. CONCLUSIONS

Block structured models are well suited for non-
linear model predictive control because of the
simple identi cation and low computational cost.
Previous approaches aimed at reducing the com-
putational cost by the inversion of the nonlinear
element. This requires the nonlinear map to be
bijective, excludes the use of Uryson models, and
leads to a loss in optimality because of the non-
linear coupling between the proxy variable used
in the objective of the linear optimization prob-
lem and its counterpart in the original objective.
Sensitivity equations have been derived for multi-
variable Hammerstein and Uryson models to allow
the solution of nonlinear optimization problems
constrained by these models at low computational
cost. An example problem with a non-square con-
troller with two inputs parameterized on 10 inter-
vals each was solved in less than 1 second and at
the same time reduced the optimality loss by over
80% compared to previous methods, because of
the increased modeling exibility. Future research
will be directed at developing a tailored state
estimation method for multivariable Hammerstein
models to solve the closed loop NMPC problem.
Further, online updating methods for the linear
elements will be investigated to increase model
accuracy.
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