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Abstract: A modified Quadratic Partial Least Squares (MQPLS) algorithm based on

nonlinear constrained programming is proposed. Sequential Unconstrained Minimization

Technique (SUMT) is employed to calculate the outer input weights and the parameters

of inner relationship. It was found that MQPLS can not only explain more of the

underlying variability of the data, but also has improved modelling and predictive ability.

An inferential control system is implemented on the Distribute Control System (DCS) of

a fluid catalytic cracking unit ( FCCU) main fractionator. A soft sensor MQPLS–based

was developed to estimate solidifying point of diesel oil. The controller was established

via constrained Dynamic Matrix Control (DMC) algorithm. Real time application results

demonstrated the performance of the inferential control system based on MQPLS was

much better than the original tray temperature control system. This resulted in a 1.0% 

increase in production rate, and a significant increase in profit. Copyright © 2006 IFAC

Keywords: Partial Least Squares, Soft Sensor, Dynamic Matrix Control, Inferential

Control.

1. INTRODUCTION

Many variables, which characterize the ‘quality’ of

the final product in chemical processes, are often

difficult to measure in real-time, and hence cannot be

directly used in a feedback control. Most online

quality analyzers, like gas chromatographs and NIR

(Near-Infrared) analyzers, suffer from large measure

delays and high investment and maintenance costs.

Under these circumstances, a common alternative is

to set up soft sensors to infer the product properties

(primary variables) by employing some auxiliary

measurements (secondary variables), and then build

an inferential control scheme.

Statistic regression techniques have been extensively

used in establishing soft sensing models from

historical data. Among other related regression
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techniques, PLS has been proved to be a powerful

tool for problems where data is noisy and highly

correlated and where there are only a limited number

of observations (Berglund and Wold, 1997;

MacGregor et al., 1991). The power of PLS lies in 

the fact that it projects the input-output data down

into a latent space, extracting a number of principle

components with an orthogonal structure, while

capturing most of the variance in the original data.

Therefore, PLS can overcome the limitation that

when dealing with highly correlated multivariate data,

the traditional Least Squares (LS) regression will

result in singular solution or imprecise parameter

estimations.

However, in many practical situations, industrial

processes exhibit significant nonlinear behaviors. As

a linear regression method, PLS is inappropriate for

modeling nonlinear systems.

Hence various kinds of nonlinear PLS (NLPLS)

methods have been proposed in the literature which

extend the PLS model structure to capture non-

linearities of systems. A successful step towards 
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nonlinear PLS modeling was the quadratic PLS

(QPLS) proposed by Wold et al. (1989). In QPLS,

second order polynomial (quadratic) regression is

used to fit the function between each pair of input

and output score vector, namely, the inner relation.

The other ‘generic’ nonlinear PLS (NLPLS) such as 

spline PLS (SPLS) (Wold, 1992), neural networks

PLS (NNPLS) (Qin  and McAvoy, 1992) and Fuzzy

PLS (FPLS) (Yoon et al., 2003) were developed. As

their names suggest, SPLS uses spline function

(quadratic or cubic) as inner model and NNPLS uses

neural networks inner model. FPLS uses TSK

(Takagi-Sugeno-Kang) fuzzy model as the inner

model. All the algorithms above are developed from

the nonlinear iterative partial least squares (NIPALS)

algorithm (Geladi and Kowalski, 1986), which is

called the ‘engine’ of the PLS methodology.

The problem of the input weight updating in NLPLS

was firstly considered by Wold et al. (1989) and the

benefit achieved by applying an updating procedure

to the parameters of the NLPLS model was also

proved. It has attracted the interests of many

researchers. Especially, by modifying the input

weight updating procedure of Wold et al., an error-

based input weight updating approach was presented

by G.baffi et al. (1999a, 1999b and 2000). In this

paper, the input weight updating procedure is

summarized to a constrained nonlinear optimal

problem. Sequential Unconstrained Minimization

Technique (SUMT) is utilized to calculate the outer

input weights and the parameters of inner relation. It

can make remedies of the shortcomings of the

pseudo-inverse and large calculation burden that

exist in the error-based input weight updating

approach. Although this new kind of weight updating

method is applicable to any nonlinear PLS algorithm,

the new updating method is only combined with the

original QPLS in this paper, leading to a modified

quadratic Partial Least Squares (MQPLS) algorithm.

The paper is organised as follows. In Section 2, the

basic principle of the NLPLS is introduced, and the

error based input weight updating procedure by G.

Baffi et al. (1999a) is briefly reviewed. Section 3

proposed a new input weight updating method and

highlighted the details of the corresponding modified

QPLS algorithm. Section 4 introduced the main

structure of an inferential control system, in which

the soft-sensor was built based on the modified

QPLS to estimate diesel oil solidifying point, and the

controller was established via a simplified Dynamic

Matrix Control (DMC) algorithm. Section 5 gives the

conclusions.

2. QUADRATIC PARTIAL LEAST SQUARES

PLS algorithm decomposes X and by projecting

them to the directions (input weight and output

weight ) to extract several pair of input score

vector and output score vector .The

decomposition, known as the PLS outer relation, is 

formulated as follows: 
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Where and are loading vectors, and are

residuals, and is the estimator of and

calculated by the inner relation.

hp hq hE hF

hû
hu

hhhh etfu )(  (3)

)(ˆ
hhh tfu (4)

The traditional linear PLS performs an ordinary LS 

regression between pair of corresponding score

vectors, that is,
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while QPLS employs second order polynomial

(quadratic) regression for inner mapping:
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The appropriate number of components required to

describe the data structure, , is generally identified

by means of cross-validation and chosen to be one

which minimizes the Predictive Error Sum of

Squares (PRESS). It is because most of the variance

of the input and output matrixes can usually be

accounted for by the first few score vectors, whilst

the residuals are typically associated with the random 

noise in the data sets. 

k

The problem of input weight updating procedure in

NLPLS cannot be omitted. (Wold et al., 1989; Baffi 

et al., 1999a; Yoon et al., 2003). The input updating

procedure proposed by Baffi et al. (1999a) is an 

error-based approach and listed as follows.

The mismatch between the value of , given

by

he hu

hh qu Y , and the value of hu , given by the

nonlinear mapping, ),(ˆ
hhhh btfu , can be denoted

by

hhh uue ˆ  (8)

Based on the first-order series expansion, equation (8)

can be written as 
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By combining the partial derivatives into a 

matrix can be written as and the

correction can be regressed directly as follows
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h ZZ in equation (10) is the pseudo-inverse of the

matrix . Then the input weight is updated)( h
T

h ZZ
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And check convergence on . The updating

procedure is completed if a new input score vector

(

ht

ht

hh wt X ) is stable; otherwise repeat the steps

mentioned above.
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3. MODIFIED QPLS

In this section, a new input weight updating

procedure based on nonlinear programming is

presented. The new weight updating procedure

combined with QPLS leads to QPLS based on

nonlinear programming, whose NIAPLS algorithm is

also given detailed.

3.1 A new input weight updating procedure

There are three points of the error based input weight

updating procedure worthy to be investigated.

Firstly, in equation (10) is rank deficient under

two conditions. One is input dimension is lager than

number of samples, the other is the partial

derivatives of the inner relation being linearly

correlated with themselves or alternatively with the

inner relation itself. In this case, the correction

cannot be obtained directly by equation (10).

So the pseudo-inverse is necessary and numerical

techniques are needed to evaluate the pseudo-

inverse .

hZ

hf

hw

)( h

T

h ZZ

Secondly, is updated iteratively until the input

score vector is converged, which result in large

computation burden.

hw

ht

Thirdly, by applying the error based input weight

updating procedure, the NLPLS model can catch 

larger output cumulative variance, but smaller input

cumulative variance. It was also pointed out by Yoon

et al. (2003). 

In this paper, a new input weigh updating procedure

was proposed on the basis of the method proposed by

G.baffi et al. The core of the method is as follows.

The objective of the error based weight updating

procedure by G..baffi et al. is to find proper input

weights and parameters of nonlinear inner relation

which can minimize the regression SSE of the each

nonlinear inner relationship. It can be classified as a

constrained nonlinear programming problem. In

QPLS, the optimal weights and polynomial

coefficients of inner relationship can be derived from

nonlinear programming methods. The optimization

problem, including the objective function and the

constraints, can be described as follows:

)ˆ()ˆ(min hh
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In this problem, and are the decision variables,

which should be found to minimize the objective

function and satisfy the constraints. Herein 

Sequential unconstrained minimization technique

(SUMT) is used to transform problem (12) into a

series of unconstrained nonlinear programming

problems. Then Hook-Jeevs method is employed to

solve the unconstrained nonlinear programming

problems. The initial values of and are obtained

by NIPLAS algorithm.

hw hb

hw hb

By applying the proposed input weight updating

procedure, the optimal do not need to be calculated

iteratively and the steps in NIPALS algorithm are 

simplified accordingly. Since the weight updating 

method improves the fitness of inner relation by

changing the spread of score vectors, the proposed

one is more precise than the error based one and can

catch more cumulative variance. It will be illustrated

in the application in Section 4.1.

hw

3.2 Modified NIPALS algorithm:

The new weight updating procedure combined with

QPLS leads to QPLS based on nonlinear

programming, which is called the modified QPLS

(MQPLS). Details of the steps of modified NIPALS

algorithm are shown in Table 1.

Table 1 Summary of the modified NIPALS algorithm

It is assumed that and blocks have been

preprocessed, i.e., scaling around zero mean and unit

variance. Proper scaling prevents the score vectors 

from being biased towards variables with larger

magnitude. For each component :

X Y

h

1 Take jh yu (if the column of equals to 1,

setu equal to )

Y

Y

2 Calculate the input weight h

T

h

T

h

T

h uuuw /X

3 Normalize ||||/ hhh www

4 Calculate the input score vector hh wt X

5 Fit the quadratic inner relationship

]]1[[
2

h

T

hhhh ettufit
h

bb

6 Calculate the nonlinear prediction of hu
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7 Calculate the optimal input weight and

parameters of inner relationship according to the new

weight updating procedure described in Section 3.1

8 Calculate the new input score vector hh wt X

9 Calculate the input loading vector 
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T
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16 Calculate the output residual
T
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17 If kh ( is the optimal number of 

components), step 1-17 are repeated ( and should

be replaced by and ).
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4. INFERENTIAL CONTROL OF A FCCU

FRACTIONATOR

4.1 Soft sensor of diesel oil solidifying point

An industrial FCCU main fractionator is one of the

key processes in modern petroleum refining. The

function of the unit is to separate heavy distillates

from FCC reactor like gas oils or residuals into

gasoline, diesel oil and middle distillates. The

MOPLS algorithms described above are applied to

establish the soft sensors on the unit to predict diesel

oil solidifying point.

Through mechanism analysis, fifteen process

variables are chosen as secondary variables and

measured online at one minute intervals. Secondary

variables include top pressure top temperature, the

flow rate, temperature of the second reflux, etc. A

data set including 720 samples are gathered from the

DCS database of the FCCU main fractionator. The

actual analysis value of product quality is only

available from the lab with a frequency of 2 hours.

The outliers have been removed beforehand. The

data is split into a training data and a test data. Every

fifth observation is placed in the test data set, totally 

144 samples, and the remaining 576 observations

form the training data. The optimal number of

components is calculated by cross validation.

Slight nonlinearity is found in first pair of component

of data gathered, which is suitable to be fit by

quadratic polynomial. The cumulative variance of 

the block and block captured by each model and

their Mean Square Predictive Error (MSPE) is given

in Table 2 for linear PLS, QPLS, error based QPLS

and MQPLS respectively. Figures 1-4 illustrate the

final predication for the test data for the four

algorithms.

X Y

The MSPE of the original QPLS is 1.3197, whilst the

error based QPLS is 1.1651 and MQPLS is 1.0847. It

is clearly evident that the three kinds of QPLS 

algorithms catch the main nonlinear characteristic in

the data set. Although the predictive abilities of the

error based QPLS and MQPLS are comparable,

MQPLS shows a few better than the error based

QPLS. The predictive results of MQPLS are used as

a reference of the operators.

4.2 Predictive inferential control scheme

The product quality control of the fractionator has

been a classical and difficult problem. Traditionally, 

the product quality is represented by tray temperature

control, which has a wide application in the chemical

plants. An inferential controller for quality control

can be established once the solidifying point of diesel

oil is available through the modified QPLS based soft

sensor. Many papers (Kano et al., 2000; Kano et al.,

2003) have proposed cascade inferential control

system in which the set point of tray temperature

controller is given by the output of quality inferential

controller. However, in such control scheme, the

inner temperature controller has a greater influence

on the performance of the whole system, and its

complex structure brings some difficulties to

operators.

In this paper, a new inferential control system is

proposed in which tray temperature controller and

quality inferential controller can be switched without

producing any disturbance. The configuration of the

proposed inferential control system is showed in 

Figure 5. Temperature controller (denoted as TC in

Figure 5) still uses the original tray temperature

controller. Inferential controller (denoted as AC in

Figure 5) adopts constrained Dynamic Matrix

Control (DMC) algorithm.

Table2.  Model comparison: Cumulative variance (%)

Linear PLS Original QPLS Error based QPLS MQPLS
LV

X Y X Y X Y X Y

1

5

10

15

69.75

70.85

92.45

100.00

56.37

62.14

65.06

68.85

74.40

93.61

99.40

100.00

72.47

75.51

78.24

78.62

29.42

37.17

52.08

62.58

78.61

80.24

91.73

92.55

34.56

53.56

87.26

88.83

82.70

84.96

92.57

93.79

MSPE 1.4687 1.3197 1.1651 1.0847
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Fig.1 Actual versus Predicted values for the Linear

PLS (……actual; ——predicted)
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Fig.2 Actual versus Predicted values for the QPLS

(……actual; ——predicted)
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Fig.3 Actual versus Predicted values for the error

based QPLS (……actual; ——predicted)
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Fig.4 Actual versus Predicted values for MQPLS

(……actual; ——predicted)

DMC uses the step response model for predicting the

process output P step into the future in the absence of 

further control action. The model is also used to

calculate the present and future M control actions

which minimizes the following objective function:
1

2

0

J {[ ( ) ( )] [ ( )] }
m

r c

i

y k p y k p q u k i r2

i

 (13)

s. t. maxminmax )(,)( ukuuuku

Where is the set objective value.)( pkyr

Fig. 5 Schematic diagram of a FCCU main

fractionator

This kind of design scheme can make use of the

original system module, and is easy to be

implemented on the DCS system, and gives facilities

for operating. However, there are some questions to 

pay attention to in practice. When step response of

process is made for DMC, it must be sure that step

response starts from some steady state. Also the 

inferential control system should consider some

abnormalities from DCS and process to guarantee the

safety of the process. Because the running

performance of chemical plants is often in change,

predictive model updating is another key point.

4.3 Real-time implementation Results

The designed soft sensor and the predictive inferential

controller were implemented on the Distribute

Control System (DCS) of an industrial FCCU main

fractionator using CL (Control Language)

programming. The sequential predicting results are 

shown in Figure 6, in which the dotted line is 

gathered from the laboratory and the solid line is 

computed by MQPLS soft sensor. The MSPE is

1.1055 and the predicted result is satisfactory to be

used as the set point of the inferential controller.

Figure 7 compares the diesel oil quality control

performance for both before and after implementing

predictive inferential control system. It can be seen 

that the control variance decreases clearly when 

inferential control system is employed. Figure 8 show

closed loop response of predictive inferential control

system. When the set point step change of solidifying

point is from -7.5 to -6 , the control system can 

quickly trace the desired value.

Application results indicate that inferential control

system has a better performance than tray temperature

control system.

IFAC - 1067 - ADCHEM 2006



0 20 40 60 80 100
-5

0

5

10

15

Sample number

s
o
lid

if
y
in

g
 p

o
in

t

100 120 140 160 180 200
-5

0

5

10

Sample number

s
o
lid

if
y
in

g
 p

o
in

t

Fig. 6 Validation data set. Comparison between the

actual value of solidifying point and its estimates 

provided by MQPLS (——predicted; ……actual)

Fig 7 Comparison of the tray temperature control and 

inferential control system

Fig 8 Closed-loop response of predictive inferential

control system by step set point change

5 CONCLUSIONS

In this paper, the error based weight updating

procedure of G. Baffi et al. is studied. A new weight

updating procedure based on nonlinear programming

is formulated. MQPLS algorithms are proposed. In 

comparison with existing QPLS algorithms, MQPLS

can catch much higher percentage of input and output

cumulative variance, avoid the problem of the

pseudo-inverse of matrix and reduce the calculation

burden. To realize online measurement, a soft sensor

is built based on the MQPLS to estimate the

solidifying point of diesel oil for an industrial FCCU 

main fractionator. An inferential control scheme is

proposed. This control scheme can switch between

usual tray temperature controller and inferential

controller based on constrained DMC algorithm. The 

practical results obtained from an industrial plant

show that the proposed system has a better

performance than the traditional tray temperature

control system.
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