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Abstract: In this work, linear, quadratic, and nonlinear empirical models were built and 

compared with a dynamic nonlinear phenomenological model with respect to the

capability of predicting the melt index and polymer yield rate of a low density

polyethylene production process. Based on steady-state gains and on known first and 

second order time constants of the process, the empirical models were generated using 

PLS, QPLS, and BTPLS methods in order to predict the system dynamics. As the 

quadratic model provided more reliable predictions, it was used as melt index virtual

analyzer of an advanced control strategy for an industrial plant, improving the controller 

action and the polymer quality by reducing significantly the process variability.

Copyright © 2006 IFAC.
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1. INTRODUCTION
 

Correctly validated multivariate models are useful 

tools for the development of reliable predictive

controllers in polymerization processes. 

Depending on their nature, empirical or

phenomenological, these models may provide

different levels of information about the process.

When those kinds of models are compared,

phenomenological models are supposed to show

higher extrapolation capability. However, empirical 

models require much less investments in modelling, 

especially when little is known about the physical and 

chemical phenomena underlying the process. 

Concerning specifically to the modelling of

polyolefin polymerization processes, many studies

have been developed in the last decades. Sato et al 

(2000) studied the modelling and simulation of an 

industrial gas-phase ethylene polymerization process, 

based on the phenomenological model of McAuley 

(1991), for using in nonlinear controller design for 

melt index and density. Many published papers deal 

with modelling and parameter estimation for

nonlinear model predictive controller design in

industrial applications, like Zhao (2001) and Soroush 

(1998). Bindlish et al. (2003) studied the parameter 

estimation problem for industrial polymerization

processes. In their work, two kinetic parameters were 

estimated for Exxon's homo and copolymerization to 

use in monitoring and feedback control systems of 

these processes.

In this work phenomenological and empirical 

models for the prediction of yield and melt index of 

an industrial process for the production of linear low-
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density polyethylene (LLDPE) are compared. The 

studied process is composed by two gas-phase

reactors connected in series. For both reactors, the 

considered operational variables (model inputs) are

the ethylene (C2), butene (C4) and hydrogen (H2) 

concentrations, catalyst flow rate (Cat), the bed

temperature (T), total pressure (P), and fluidized bed 

level (L). The response variables (model outputs) are 

the polymer melt index (MI) and polymer yield rate 

(YR) at the outlet of each reactor. The studied process 

is schematized in Figure 1:

Figure 1: Scheme of the polymerization process.

Two ten-days dataset containing measurements of 

all considered variables were collected. The sampling 

rate varies from one variable to another. For the

variables measured on line (T, P, C2, C4, H2 and Cat) 

it is in the order of minutes while for MI it is in the 

order of hours. In this text, the first dataset will be 

treated as dataset A and the second dataset will be 

treated as dataset B. These data sets are presented in 

Figure 2 and in Figure 3. The vertical axis of the plots 

correspond to the coded variables measurements and 

the horizontal axis correspond to the time window 

where these variables measurements ware made.
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Figure 2: Process first dynamics dataset (A).

2. PHENOMENOLOGICAL MODEL 
 

Industrial fluidized-bed reactors have been

modelled by several authors, see for example Kunii 

and Levenspiel (1991) and Choi and Ray (1985). 

According to the model proposed by Gambetta et al.

(2001), the fluidized bed can be divided in two 

regions: an emulsion phase and a bubble phase,

connected by heat and mass transfer between them. 

The emulsion phase has a solid phase (polymer and 

catalyst), a gas phase at the minimal fluidization 

condition, and a gas phase adsorbed by the solid 

phase. The bubble phase is composed by the excess of 

gas required to keep the emulsion phase at the

minimal fluidization condition. In the disengagement 

section, it is only considered the gas phase.
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Figure 3: Process second dynamics dataset (B).

The kinetic model was developed for Ziegler-

Natta catalysts, considering the following reactions: 

spontaneous activation of sites, chain initiation by 

monomer, chain propagation, chain transfer to

hydrogen, and spontaneous and by hydrogen

deactivations. The equations of these reactions are

presented in Table 1, where Cp denotes a potential 

site, Pδ 
k
 a site of type k , Pδ,ι 

k
a initiated chain with 

monomer type i and site type k , Pn,ι 
k
 a live polymer

chain with n monomers with end group i and active 

site k , Mi a monomer molecule of type i, Cd a dead 

site and Dn
k
 a dead polymer chain with n monomers 

of site k .

Table 1: Reactions considered in the kinetic model.
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Mass balances for the main gases (ethylene, co-

monomers, solvent, and hydrogen) and polymeric 

species were used to obtain the gas phase and the

polymer compositions. The momentum technique for 

the bulk polymer (the sum of live and dead polymer) 

was used to determine the molecular weight

distribution. Empirical correlations previously

adjusted with experimental data were used to obtain 

the melt index as a function of the weight average

molecular weight predicted by the mo del.

A differential-algebraic equations (DAE) system 

arises when the kinetic model equations and the melt 

index empirical correlations are inserted in the mass 

balances. The resulting DAE system was solved using 

the integrator DASSLC
1
 and the Matlab/Simu link

2

environment for input and output data manipulation. 

Each reactor model has 22 states and the simulation 

time was about 25 seconds for 11 days of plant data 

using a Pentium III with 800 MHz and 128 MB 

RAM.

The dataset A was then used to adjust some of

model parameter to the studied process. A sensitivity

analysis was carried out to select the key parameters 

to be adjusted. According to this analysis, the selected

parameters to adjust yield and melt index were the 

pre-exponential coefficients and the activation

energies of the following reactions: cross

propagation, chain transfer to hydrogen, and

hydrogen and spontaneous deactivation of active

sites. The seven inputs of the model were: monomer, 

hydrogen and solvent concentrations, catalyst flow 

rate, height of the fluidized bed, reactor temperature,

and total pressure. The dataset B was reserved to 

validate the model.

Figure 4 shows the comparison between the data 

set A for polymer yield rate values and the values

predicted by the model. When comparing the model 

predictions with plant data, it becomes clear that the 

model dynamics must be improved for the second 

reactor. This could be achieved by including a term of 

tendency in the objective function.

Figure 4: Plant data versus phenomenological model 

yield rate predictions for dataset A.

1
http://www.enq.ufrgs.br/enqlib/numeric/numeric.html

2
Copyright The Mathworks, Inc.

In Figure 5 the same comparison between plant 

data and model predicted values is presented for melt 

index. It can be noted that the model dynamics seems 

to be good, but a considerable offset can be observed.

Figure 5: Plant data versus phenomenological model 

melt index predictions for dataset A.

The model validation will be presented in Section 

4, where the phenomenological and the empirical 

models will be compared.

3. EMPIRICAL MODEL
 

For a given sample data, let the process input 
variables be collected as columns of an X matrix of

rank r, whose rows represent different process

observations. Let also the corresponding output

variable values be collected as elements of a y vector. 

The dimension reduction methods perform the
regression procedure in a subspace T extracted from 

the original X matrix. This subspace is constituted by

at most r independent directions (latent structures or 

components), which are linear combinations of the

original explanatory variables. The ability of building 

a model with the correct number of directions

eliminates the collinearity problem and allows some

noise filtration. The different dimension reduction

methods are basically distinguished from one to

another by the criteria considered to extract the latent 

structures from the original matrices. This work is 

focused in the linear and nonlinear PLS methods,
which decompose the X matrix searching for the

directions that better describe the response variable.

The linear PLS method proposed by Wold (1984) 

and its nonlinear extensions, Wold et al. (1989), Baffi 

et al. (1999), and Li et al. (2001), are based on the 

NIPALS (nonlinear iterative partial least squares)
algorithm, which determinates the subspace T where 

the regression is performed. Actually, the NIPALS 

algorithm extracts the latent structures t’s (T

columns) from X one by one. Starting from the

original X matrix, the algorithm determinates the first 

weight vector w, extracts the direction t = Xw and 

maps the y-t relationship using a general mapping 

function ( )ty f=ˆ . The direction t must provide the

best fit according to the considered mapping function. 
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The X matrix and the y vector are then orthogonalized 

with respect to t and ŷ . This procedure is then

repeated using the orthogonalized X and y until the 

optimal number of extracted dimensions is achieved. 

Cross-validation tests or statistical criteria can be

used to determine the optimal number of dimensions 

(Höskuldsson, 1996).

In this work two different versions of NIPALS 

algorithm were considered. The main difference

between them is the applied mapping function. The 

algorithm proposed by Wold et al. (1984), the linear 

PLS method, is based on a linear mapping function 

ŷ = bt. Aiming to consider the existence of curvature 

in the X-y relationship, Wold et al. (1989) developed 

a nonlinear NIPA LS algorithm that is  based on a

general mapping function f. In particular, the authors 

proposed the QPLS method, which employs a

quadratic polynomial as mapping function:

ŷ = b0 + b1t + b2t
2
. Afterwards, Baffi et al. (1999) 

suggested some modifications in the nonlinear

NIPALS algorithm. Recently, Li et al. (2001)

proposed the BTPLS method which resorts a highly 

flexible mapping function: ŷ = b0 + b1.[sgn(t)]
δ
|t|

α
.

In order to model the studied system input-output

relationship, several stationary points were identified 

in the dynamics datasets A and B. These stationary 

points were used to estimate the steady-state gains for 

the melt index and polymer yield rate. Based on these 

steady-state gains and on known first and second 

order time constants of the process, empirical models 

were generated using PLS, QPLS and BTPLS

methods in order to predict the system dynamics. The 

computations were carried out using the software

Matlab
3
.

For PLS, QPLS and BTPLS methods, the melt 

index and yield rate variability explained by each 

component (j = 1, 2, …, 7) is presented in Table 2 for

both reactors. The significance of the increase that 

each component causes in the cumulative explained 

variance was tested by a standard t-test. In Table 2,

the significant and the insignificant components are 

respectively presented in bold and grey numbers. The

insignificant components were neglected to avoid 

overfitting.

As it can be noted, QPLS and BTPLS exhibit 

higher capacity in explaining the output variables 

variability. For both reactors, the single significant 

component of both nonlinear methods is able to 

explain more than 95% of melt index and yield rate. 

Once it could not be observed considerable

difference in fitting performance between the

nonlinear methods, QPLS was chosen to be compared 

with the phenomenological model because it is

expected to provide more reliable predictions when 

the original model space is extrapolated.

3
Copyright The Mathworks, Inc.

Table 2: PLS modelling summary.

4. COMPARSION BETWEEN MODELS

 
In order to compare the phenomenological and 

empirical methodologies, the previously generated

phenomenological and QPLS models were used to

predict the transient behaviour of data set B. The 

results are reported in Figure 6, Figure 7, Figure 8,

and Figure 9.

When the phenomenological and QPLS

predictions for polymer yield rate are compared, it 

becomes clear that the empirical model have superior 

capability in describing the process dynamics. The 

empirical model also exhibits a considerably smaller 

bias. The analysis of the melt index predictions is 

presented in Figure 8 and Figure 9. Again, the QPLS 

method exhibited outstanding predictive performance.

Figure 6: Plant data versus phenomenological model 

yield rate predictions for dataset B (validation).
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Figure 7: Plant data versus one-component QPLS 

model yield rate predictions for dataset B (validation).

Figure 8: Plant data versus phenomenological model 

melt index predictions for dataset B (validation).
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Figure 9: Plant data versus one-component QPLS 

model melt index predictions for dataset B

(validation).

5. INDUSTRIAL APPLICATION

To illustrate the applicability of the developed 

models, the QPLS model for the melt index was used 

as virtual analyzer of a predictive controller (MPC)

for the MI. Figure 10 and Figure 11 show historical 

data of MI in opened and closed loop. The MI data in 

these figures correspond to measurements performed 

in laboratory from samples taken at each two hours.

The virtual analyzer used in the closed loop

provides predicted values of MI to the controller at 

time intervals of one minute, improving the controller 

action and the polymer quality, as observed in Figure

11 where the dashed line at normalized MI = 1 is the 

setpoint.

As can be observed in Figure 12, which shows 

the normal distribution curves built with the means 

and standard deviations of opened and closed loop 

data, the melt index variability was significantly 

reduced by the controller.

It is important to observe that the dashed lines at 

normalized MI equal to 0.8 and 1.2 in Figure 11 and 

Figure 12 correspond to the lower and upper MI 

specification limits. Consequently, these figures

indicate that the closed loop strategy reduced the out 

of specification products. These results are confirmed 

by evaluating the process capability index (CPK), 

defined as the ratio between permissible deviation, 

measured from the mean value to the nearest specific 

limit of acceptability and the actual one-sided 3σ
spread of the process, Montgomery (1991), and

taking into account that larger values of CPK mean 

higher product quality. The CPK for the opened loop 

was 0.40 and for the closed loop was 1.00.

Figure 10: Historical melt index opened loop data.

Figure 11: His torical melt index closed loop data.
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Figure 12: Distribution curves for the open loop and 

the closed loop.

6. CONCLUSION
 

Models of different types for ethylene

polymerization reactors were adjusted with process 

industrial data. The comparison between these models 

showed better results for the empirical models with 

nonlinear steady-state gains and linear dynamics. 

The empirical model for the melt index was

successfully used as virtual analyzer of an advanced 

control strategy for an industrial plant, improving the 

controller action and the polymer quality by reducing 

significantly the process variability.

 
 

REFERENCES
 
Baffi, G., Martin, E.B and Morris, A.J. (1999), Non-

Linear projection to latent structures revisted: the 

quadratic PLS algorithm, Computers and

Chemical Engineering , 23, 395.

Bindlish, R., Rawlings, J.B. and Young, R.E. (2003), 

Parameter Estimation for Industrial

Polymerization Processes, AIChE J., 49(8), 2071.

Choi, K.Y. and Ray, W.H. (1985), The Dynamic

Behaviour of Fluidized Bed Reactors for Solid 

Catalized Gas-Phase Olefin Polymerization,

Chem. Eng. Sci., 40, 2261.

Finkler, T.F. (2003), Desenvolvimento de uma

Ferramenta para Obtenção de Modelos

Empíricos, Master Thesis, Universidade Federal 

do Rio Grande do Sul, Porto Alegre, 2003.

Gambetta R., Zacca J.J. and Secchi A.R. (2001)

Model for Estimation of Kinetics Parameters in 

Gas-Phase Polymerization Reactors. In

proceedings of the 3rd Mercosur Congress on 

Process Systems Engineering  Santa Fé, Argentina, 

vol. II, 901-906.

Höskuldsson, A. (1996), Prediction Methods in

Science and Technology, Thor Publishing, v.1,

1996.

Kunii, D. and Levenspiel, O. (1991), Fluidization

Engineering, 2nd Edition, Butterworth-

Heinemman, New York.

Li, B., Martin, E.B and Morris, A.J. (2001), Box-

Tidwell based partial least squares regression,

Computers & Chemical Engineering, 25, 1219.

McAuley, K.B. and MacGregor, J.F. (1991), On-line

inference of polymer properties in an industrial 

polyethylene reactor, AIChE J., 37(6), 825. 
Montgomery, D. (1991), Introduction to Statistical 

Quality Control, John Wiley & Sons, New York

Sato, C., Ohtani, T. and Nishitani (2000), H.,

Modeling, simulation and nonlinear control of a 

gas-phase polymerization process, Comp. Chem. 

Eng., 24, 945.

Soroush, M. (1998), State and parameter estimations 

and their applications in process control, Comp.

Chem. Eng., 23, 229.

Wold, S. Ruhe A., Kettaneh N. and Skagerberg B. 

(1989), Nonlinear PLS modeling, Chemometrics

and intelligent laboratory systems, 7, 53.

Wold, S. Ruhe A. and Wold H. (1984), Dunn, W.J., 

The Collinearity Problem in Linear Regression:

The Partial Least Squares Approach to

Generalized Inverses, Siam J. Sci. Stat. Comput., 

5, 735.

Zhao, H., Guiver, J., Neelakantan, R. and Biegler, 

L.T. (2001), A nonlinear industrial model

predictive controller using integrated PLS and 

neural net state-space model, Control Eng.

Practice, 9, 125.

IFAC - 1124 - ADCHEM 2006


