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Abstract: Plant-wide oscillations are common in many processes. Their effects
propagate to many units and may impact the overall process performance. It is
important to detect and diagnose the oscillations early in order to rectify the
situation. This paper proposes a new procedure to detect and diagnose plant-wide
oscillations. A technique called spectral envelope is used to detect the oscillations.
Two kinds of plots - scaling and power plots - are proposed to identify the variables
exhibiting common oscillation(s). These plots are also useful in isolating the key
variables as the candidates of the root cause. An industrial case study is presented
to demonstrate the applicability of the proposed procedure. Copyright c© 2006
IFAC
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1. INTRODUCTION

Detection and diagnosis of plant-wide distur-
bances is an important issue in many process
industries (Qin, 1998). Oscillations are a com-
mon type of plant-wide disturbance whose effects
propagate to many units and thus may impact
the overall process performance. Increasing em-
phasis on plant safety and profitability strongly
motivates the search for techniques to detect and
diagnose plant-wide oscillations. Thornhill and
Hägglund (1997) used the zero-crossings of the
control error signal to calculate integral absolute
error (IAE) in order to detect oscillation in a
control loop. This method has poor performance
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for noisy error signals. Miao and Seborg (1999)
suggested a method based on the auto-correlation
function to detect excessively oscillatory feedback
loop. The auto-covariance function (ACF) of a sig-
nal was utilized in Thornhill et al. (2003a) to de-
tect oscillation(s) present in a signal. This method
needs a minimum of five cycles in the auto-
covariance function to detect oscillation, which
is often hard to obtain, particularly in the case
of a long oscillation (e.g., an oscillation with a
period of 400 samples). Although the data set
can be downsampled in such cases, downsampling
may introduce aliasing in the data. Thornhill et
al. (2002) proposed to perform spectral principal
component analysis (SPCA) to detect oscillations
and categorize the variables having similar oscilla-
tions. This method does not provide any diagnosis
of the root cause of the oscillation which is gener-
ally the main objective of the exercise.
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In this paper, a new procedure based on the spec-
tral envelope method for detection and diagnosis
of common oscillation(s) is proposed. The spec-
tral envelope method needs neither a minimum
number of cycles to be present in the signal nor
filtering of the data to detect multiple oscilla-
tions. In terms of grouping the variables with
common oscillation(s), the proposed procedure is
more sensitive to oscillations and has a better
resolution in identifying the variables oscillating
at the same frequencies than the commonly used
SPCA method. Furthermore, the proposed proce-
dure can also deliver useful information about the
root cause of common oscillation(s).

2. OSCILLATION DETECTION

In this section, the concept of spectral envelope
is introduced. A simulation example is presented
to demonstrate its ability to detect multiple oscil-
lations. The performance comparison with SPCA
method is also included.

2.1 Definition of the Spectral Envelope

The concept of spectral envelope was first pro-
posed by Stoffer et al. (1993) to explore the pe-
riodic nature of categorical time series. In 1997,
McDougall et al. (1997) extended the concept of
spectral envelope to real-valued series. Here we
provide an easy interpretation of the concept of
spectral envelope.

Let X(t) = [x1(t), x2(t), · · · , xm(t)]T , t = 0,±1, ...,
be a vector-valued time series on �m. xi(t), 1 ≤
i ≤ m, is a univariate time series which can be a
sequence of observations of a process variable. De-
note the covariance matrix of X(t) as VX and the
power spectral density matrix of X(t) as PX(ω).
Here, ω represents frequency and is measured in
cycles per unit time, for −1/2 < ω ≤ 1/2.

Let g(t, β) = β∗X(t) be a scaled series from �m

to �, where β is a column vector which may be
real or complex. The * means complex conjugate.
g(t, β) is actually a linear combination of the
rows of X(t). Then the variance Vg(β) of g(t, β)
can be expressed as Vg(β) = β∗VXβ, and the
power spectral density Pg(ω, β) of g(t, β) can be
expressed as Pg(ω, β) = β∗PX(ω)β.

The spectral envelope of X(t) is defined to be:

λ(ω) � sup
β �=0

{Pg(ω, β)
Vg(β)

} = sup
β �=0

{β∗PX(ω)β
β∗VXβ

} (1)

where − 1
2 < ω ≤ 1

2 and the relationship between

Pg(ω, β) and Vg(β) is Vg(β) =
∫ 1

2
− 1

2
Pg(ω, β)dω.

The quantity λ(ω) represents the largest propor-
tion of the power (or variance) that can be ob-
tained at the frequency ω for any scaled series.

The scaling vector that results in the value λ(ω)
is called the optimal scaling vector at frequency
ω, which is denoted as β(ω). Accordingly, the
elements of the optimal scaling vector are called
the optimal scalings. The optimal scaling vector
β(ω) is not the same for all ω.

We prefer to limit β to the constraint, β∗VXβ = 1.
Therefore the scaled series g(t, β) is unit variance.
This will make the calculated spectral envelope
more interpretable and make the magnitude of
the elements of β(ω) more comparable. Accord-
ingly, the quantity λ(ω) represents the largest
power(variance) that can be obtained at the fre-
quency ω for any scaled series with unit variance.

With the optimal scaling vector β(ω), equation
(1) can be rewritten as:

λ(ω)VXβ(ω) = PX(ω)β(ω) (2)

It follows that λ(ω) is the largest eigenvalue asso-
ciated with the determinant equation:

|PX(ω) − λ(ω)VX | = 0 (3)

β(ω) is the corresponding eigenvector satisfying
equation (2).

2.2 Another Definition of the Spectral Envelope

Denote V = diag(VX), which only has the diago-
nal elements of VX . We can use V instead of VX in
equation (1) and have a new expression for λ(ω):

λ(ω) = sup
β �=0

{β∗PX(ω)β
β∗V β

} (4)

The resulting λ(ω) and β(ω) is different from
those in the equation (1). Only under the con-
dition that {x1(t), x2(t), ..., xm(t)} are mutually
independent, V is equal to VX and equation (4) is
the same as equation (1).

We also prefer to limit β to the constraint such
that β∗V β = 1, but this will not guarantee that
the scaled series g(t, β) is unit variance, except
under the condition mentioned above.

2.3 Simulation Example

The following simulation example demonstrates
the superiority of the performance of the spectral
envelope method over the power spectrum and the
SPCA method in detecting oscillation(s) in signals
highly corrupted with noise.

2.3.1. Time Series Generation The example
consists of 12 time series generated with various
sinusoid oscillations. In these time series, ε(t) is
a white noise sequence with unit variance and
t = 1, ..., 512.
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The first four time series are corrupted by colored
noise and have base oscillation at frequency ω1 =
0.1Hz:

x1(t) = 0.8cos(2πω1t) + 2ε(t) + ε(t − 1)

x2(t) = 0.6cos[2πω1(t − 5)] + 2ε(t) + ε(t − 1)

x3(t) = 0.4cos[2πω1(t − 15)] + 2ε(t) + ε(t − 1)

x4(t) = 0.2cos[2πω1(t − 2)] + 2ε(t) + ε(t − 1)

The next four time series are corrupted by colored
noise and have base oscillation at frequency ω2 =
0.3Hz:

x5(t) = 0.9cos(2πω2t) + 2ε(t) − ε(t − 1)

x6(t) = 0.7cos[2πω2(t − 7)] + 2ε(t) − ε(t − 1)

x7(t) = 0.5cos[2πω2(t − 10)] + 2ε(t) − ε(t − 1)

x8(t) = 0.3cos[2πω2(t − 20)] + 2ε(t) − ε(t − 1)

The next two time series have oscillations at both
frequencies ω1 = 0.1Hz and ω2 = 0.3Hz:

x9(t) = 0.4cos[2πω1(t − 6)] + 0.5cos[2πω2(t − 8)]
+ 2ε(t) + ε(t − 1)

x10(t) = 0.8cos[2πω1(t−16)]+0.6cos[2πω2(t−4)]
+ 2ε(t) − ε(t − 1)

The last two time series are simple colored noise
sequences in a form of moving average:

x11(t) = ε(t) + 0.5ε(t − 1)
x12(t) = ε(t) − 0.5ε(t − 1)

Before doing further analysis, all the time series
are normalized to be zero-mean and unit variance.
Figure 1 shows the time trends and power spectra
of the 12 time series. As shown in Figure 1, the
signals are highly corrupted with noise. The power
spectra of the time series do not highlight any
oscillations at 0.1Hz or 0.3Hz.
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Fig. 1. Time trends and power spectral of the 12
time series

2.3.2. SPCA Analysis Figure 2 shows the first
two principle components (PCs) plot. These two
PCs explain over 95% of the variability of the
spectra. However, these two PCs do not clearly
indicate any oscillation at 0.1Hz or 0.3Hz. Fur-
ther clustering based on these two PCs could not

give any useful information about the two oscilla-
tions as well. Therefore, SPCA fails to detect the
oscillations at frequencies 0.1Hz and 0.3Hz.
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Fig. 2. SPCA PCs plot of the 12 time series
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Fig. 3. Spectral Envelope of the 12 time series

2.3.3. Oscillation Detection Using the Spectral
Envelope Method Figure 3 shows the spectral
envelope calculated by equation (1) with the con-
straint β∗VXβ = 1. There are two significant
peaks at 0.1Hz and 0.3Hz, which means that the
scaled series could have much more energy at these
two frequencies than any other frequencies. It fur-
ther implies that some of (or all of) the 12 time
series may have significant energy at 0.1Hz and
0.3Hz. Therefore, it can be concluded that the
spectral envelope can clearly detect the multiple
oscillations present in the time series.

3. VARIABLE CATEGORIZATION

After detecting the oscillation(s), the next step
is to group the variables oscillating together at a
common frequency. Here we propose two plots, a
scaling plot and a power plot, to perform this task.

3.1 Scaling Plot

The first proposed plot is called the scaling plot,
which is the bar plot of the magnitude of the
optimal scalings calculated by equation (4) at the
oscillation frequency in a descending sequence.
The variables that have large scaling magnitudes
at a oscillation frequency are the ones contribut-
ing most to the spectral envelope peak at that
frequency, and thus are the ones participating in
the oscillation. For example, Figure 4 is the scaling
plot of the 12 time series (of the example in section
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2.3) at the frequency 0.1Hz. This plot clearly
identifies that the time series 1, 10, 2, 9, 3 and
4 have oscillation at 0.1Hz. The scaling plot of
the 12 time series at the frequency 0.3Hz can also
identify the variables oscillating at 0.3Hz. Due to
lack of space, we do not present it here.
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Fig. 4. Scaling plot of the 12 time series at 0.1Hz

3.2 Power Plot

Another proposed plot is called the power plot,
which is the bar plot of the power of each vari-
able at the oscillation frequency in a descending
sequence. The variables that have significant en-
ergy at the oscillation frequency are definitely the
ones participating in the oscillation. For instance,
Figure 5 is the power plot of the 12 time series
(of the example in section 2.3) at the oscillation
frequency 0.1Hz. This plot clearly identifies that
the time series 1, 10, 2, 9, 3 and 4 have oscillation
at 0.1Hz since they have much more energy than
the other time series at this frequency. The power
plot of the 12 time series at the frequency 0.3Hz
can also identify the variables oscillating at 0.3Hz.
Due to lack of space, we do not present it here.
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Fig. 5. Power plot of the 12 time series at 0.1Hz

3.3 Comparison of Scaling Plot and Power Plot

Comparison between the scaling plot and the
power plot reveals that the tag numbers of the
variables appear in the same order in these two
plots (see Figures 4 and 5). In other words, the
series that has more energy at the oscillation fre-
quency will have larger scaling magnitude in the
optimal scaling vector. Therefore, these two plots
are interchangeable in identifying and categoriz-
ing the variables at the oscillation frequency.

4. ROOT CAUSE DIAGNOSIS

Root cause diagnosis is a challenging problem
in the area of detection and diagnosis of plant-
wide oscillations. The main contribution of cur-
rent data based root cause diagnosis techniques
(Thornhill et al., 2003b) is to isolate the few key
variables as the candidates of the root cause, or
at least identify those variables close to the root
cause. This will reduce the workload and the cost
of plant test to determine the real root cause.

Power plot (or scaling plot) may also be used
to serve the same purpose. The main idea is to
pick up the first few variables that contribute
the most energy at the oscillation frequency as
the key variables. The root cause probably lies
within these few variables. The reason is that
chemical processes are usually low pass filters.
The process gain typically decreases as the fre-
quency increases, as observed in most Bode plots.
Therefore, as the oscillation propagates through
different control loops, the energy at the oscilla-
tion frequency will decrease because of the low
pass filtering effect of the chemical processes. The
variables close to the root cause should exhibit
more energy at the oscillation frequency than the
other variables. Thus, we take the few variables
that contribute the most energy at the oscillation
frequency as the candidates of the root cause.
The industrial case study in a later section will
demonstrate the efficiency of using this idea to
isolate the key variables.

5. NEW PROCEDURE TO DETECT AND
DIAGNOSE PLANT-WIDE OSCILLATIONS

The following steps in a new procedure to detect
and diagnose plant-wide oscillation are proposed:

• I. Normalize the data matrix that each vari-
able is zero-mean and unit variance;

• II. Calculate the spectral envelope using
equation (1) or (4) to find out the major
oscillation frequencies;

• III. Use power plot (or scaling plot) at those
oscillation frequencies identified in step II
to categorize the variables having similar
oscillations.

• IV. Use power plot (or scaling plot) to isolate
the key variables having significant oscilla-
tions. The root cause probably lies within
these variables.

6. AN INDUSTRIAL CASE STUDY

An industrial data set was provided courtesy
of the Advanced Controls Technology group of
Eastman Chemical Company. Figure 6 shows the
process schematic of the plant. The Advanced
Controls Technology group had identified a need
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Fig. 6. Process schematic

for diagnosis of a common disturbance with an
oscillation period of about 2 hours. In this section,
the newly proposed procedure is applied to this
data set to demonstrate its efficiency in detection
and diagnosis of the plant-wide disturbance.

6.1 Data Description

The provided data set contains 48 variables: 14
process variables (pv’s), 14 controller outputs
(op’s), 15 indicator variables and 5 cascade loop
setpoints (sp’s). Each variable has 8640 obser-
vations with a sample interval 20s, which corre-
sponds to data over 2 days of operation.
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Fig. 7. Time trend and power spectra of 14 pv’s

Figure 7 shows the time trends and power spectra
of the first 14 pv variables. The power spectra in-
dicate the presence of oscillation at the frequency
0.003 cycles/sample (or about 333 samples/cycle,
nearly a period of 2 hours). This oscillation affects

many variables in the process and is considered as
a plant-wide oscillation.

6.2 SPCA Analysis

The first two principle components (PCs) ex-
plained 87.47% variability of the spectra. The
second PC has a small peak around the frequency
0.003 cycles/sample which indicates the inter-
esting oscillation. However, the two-dimensional
scores plot has no meaningful clustering. It is hard
to analyze the frequency features of each variable.
To save space, we do not present the PC and score
plots here.

6.3 New Analysis Procedure

6.3.1. Oscillation Detection Figure 8 shows the
spectral envelope (from equation (4)) of the 48
variables. In the spectral envelope, there is clear
low frequency features. This is probably because
the data is from a long term operation and there
exists extremely long period influences like diurnal
weather effects that impact the process. Beside
the low frequency feature, there is a clear peak at
the frequency of 0.0031 cycles/sample, indicating
a oscillation with a period of 320 samples/cycle,
or approximately 1.78 hours/cycle. This is ex-
actly the oscillation that the Advanced Controls
Technology group of Eastman Chemical Company
wanted to detect and diagnose.
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6.3.2. Variable Categorization

Figure 9 is the power plot of the 48 variables at
the frequency 0.0031 cycles/sample. To make the
figure clear, we only show the tag numbers of the
five variables that contribute the highest energy
at this frequency. They are the key variables that
can be taken as the candidates of the root cause.
Besides these five variables, the plot also clearly
shows that many other variables are affected by
this oscillation.

6.3.3. Oscillation Diagnosis Among all the
variables, the pv and op of the control loop LC2
have the biggest energy at the oscillation fre-
quency. This result indicates that the oscillation
in loop LC2 is most severe and we should take this
loop as the first candidate of the root cause.

Actually, the control loop LC2 was exactly the
root cause found out by Thornhill et al. (2003b).
It was reported that the control valve of the loop
LC2 had a deadband of 4% and it was the root
cause. For more information, refer to Thornhill et
al. (2003b).

7. CONCLUSIONS

In this paper, the concept of spectral envelope is
modified such that it is easy to apply for detect-
ing plant-wide oscillations. This method is good
at detecting oscillations whether single or multi-
ple. Also the calculation of the spectral envelope
is straightforward and no calculation parameter
needs to be specified. In comparison to the ACF
based method, the spectral envelope method does
not suffer any limitation on minimum number of

oscillation cycles and it does not require designing
any filter. It can detect all oscillations in one step.

Scaling and power plots have been proposed for
the purpose of grouping the variables participat-
ing in the common oscillation(s). The proposed
plots can also deliver useful information about the
root cause of a plant-wide oscillation.

Finally, an industrial case study was presented to
demonstrate the efficacy of the method.
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