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Abstract: This article demonstrates the use of agglomerative hierarchical clustering to 

detect the structure within a data set. When combined with spectral principal component 

analysis to capture the main spectral features of a data set it allows visualization of the 

structure of a model with an optimum number of principal components. The paper 

presents the theory and methods for construction of the tree and gives an example using 

industrial data. Copyright © 2006 IFAC.
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1. INTRODUCTION 

Large data bases are being accumulated by 

companies operating oil, gas and chemical processes. 

When these data are used in a plant audit, the aim is 

to find groups of measurements having similar 

characteristics so that the propagation paths of 

disturbances can be tracked through a process. With 

large data sets, however, it becomes challenging to 

present the results of a multivariate analysis. While 

principal component analysis (PCA) might reduce 

several hundred measurements to, say, ten principal 

components there then remains an issue of 

presentation of the ten-dimensional model to the 

analyst. This paper demonstrates a method for 

visualization of the clusters in a high-dimensional 

spectral PCA model by means of a hierarchical 

classification tree. The key elements in the procedure 

are an agglomerative hierarchical clustering 

algorithm and a recursive algorithm to create the tree. 

Multivariate analysis using spectral methods has 

recently been reported for the case of dynamic 

disturbances (Thornhill et. al., 2002; Xia and Howell, 

2005). The benefits for plant audit application are 

that the power spectra are insensitive to time delays 

or phase lags between different measurement points 

and therefore bypass the need for time shifting and 

other methods needed for correlation-based analysis 

in the time domain. 

The next section of the paper gives a review of 

related work while Section 3 gives the formulation of 

spectral multivariate data analysis. A distance 

measure for clustering analysis is also discussed in 

Section 3 together with the automated algorithm for 

creation of the hierarchical classification tree. An 

industrial data set is then analyzed to illustrate the 

concepts showing the clustering patterns present 

before and after a plant shutdown in which 

maintenance was carried out. The paper ends with a 

conclusion section.  

2. BACKGROUND AND CONTEXT 

2.1 PCA for cluster analysis 

Descriptions of principal component analysis may be 

found from many sources, for example Chatfield and 

Collins (1980) and Wold et. al. (1987). In analytical 

chemistry, near infrared (NIR) and nuclear magnetic 

resonance (NMR) spectroscopy data are routinely 

analysed by PCA (Alam and Alam, 2005; Ozaki et. 

al., 2001) and Seasholtz (1999) described the 

industrial application of multivariate calibration in 
NIR and NMR spectroscopy at Dow Chemical 

Company. Principal component analysis has proved 

useful in other diverse areas such as paint colour 

analysis (Tzeng and Berns, 2005), in the analysis of 

the relationship between the crispness of apples and 

recorded chewing sounds  (De Belie et al, 2000) and 
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in water quality analysis (e.g. Brodnjak-Voncina et

al, 2002). Industrial uses include principal 

component analysis for monitoring of machinery and 

process equipment (Wu et. al. 1999; Malhi and Gao, 

2004; Flaten et al., 2005). All these applications have 

the common aim to discover structure within the data 

set, to ascertain the items within the data set that 

belong together and to relate the results to underlying 

mechanisms. They are normally run off-line.  

A prevalent area in process monitoring [Wise et al.,

1990; Kresta et. al., 1991; Wise and Gallagher, 1996; 

Qin, 2003] is on-line multivariate statistical process 

control in which new measurements are projected 

into a PCA calibration model that was developed 

during normal operation. Multivariate warning and 

alarm limits are set which test whether a new set of 

measurements is within the normal bounds captured 

by the calibration model [Jackson and Mudholkar, 

1979; Martin and Morris, 1996].  

The work in this paper is aimed towards the first type 

of application and concerns the visualization of 

structures in a data set and ascertains the items that 

belong together, where the items are the power 

spectra of time trends at a given measurement point. 

2.2 Visualization of high dimension PCA models 

The visualization of a high dimension multivariate 

PCA model has previously been examined by Wang 

et. al., (2004) for the purposes of a multivariate 

statistical process monitoring. They used parallel 

coordinates to display multiple dimensions of the 

score space. Each day of running in a data set was 

represented by one piecewise linear trend in the 

parallel coordinate plot, and these trends were 

overlaid on top of one another. Although it was not 

possible to see any structure within the plot it was 

possible to identify abnormal days of running by 

inspection of outliers in the parallel coordinates plot.  

2.3 Hierarchical classification 

Gordon (1987) gave a comprehensive review of 

hierarchical classification, distinguishing between 

agglomerative and divisive methods. Agglomerative 

hierarchical clustering is an unsupervised algorithm 

for building up groups of similar items from a 

population of individual items. The basic algorithm 

(Duda et. al., 2000) starts with N clusters each 

containing one item and proceeds as follows: 

repeat

find the pair of nearest clusters

merge them into one cluster

until there is one cluster containing  itemsN

The results of agglomerative hierarchical clustering 

may be visualized in a classification tree in which the 

items of interest are the leaves on the tree and are 

joined into the main tree and eventually to the root of 

the tree by branches. Industrial applications of 

clustering and/or classification trees have included 

methods for office buildings to detect days of the 

week with similar profiles of energy use (Seem, 

2005), the presentation of results from an end-point 

detection method in a crystallization process (Norris 

et. al., 1997) and from analysis of illegal adulteration 

of gasoline with organic solvents (Wiedemann et. al., 
2005). The method presented in this paper uses 

agglomerative classification in the score space of all 

significant principal components. 

Classification trees are also used in divisive 

classification in which a large group of items is 

recursively split into subcategories. In the area of 

process analysis, divisive classification has been 

combined with PCA for detection of key factors that 

affect process performance in a blast furnace and a 

hot stove system generating hot air for the blast 

furnace (Lee et. al, 2004). Clusters of items 

appearing in the score space of the first two principal 

components were identified and then further divided 

into sub-clusters using PCA recursively. 

3.  METHODS 

3.1 Spectral PCA 

In spectral principal component analysis (PCA) 

(Thornhill et. al., 2002) the rows of the data matrix 

X  are normalized power spectra ( )P f :

1 1 1

1

( ) ... ( )

.. .. ..

( ) ... ( )

N

m m N

N frequency channels

x f x f
m

 measurements
x f x f

X

A PCA decomposition reconstructs the X  matrix as 

a sum over p orthonormal basis functions 1w  to pw

which are spectrum-like functions each having N

frequency channels arranged as a row vector: 
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The i’th spectrum in X  maps to a spot having the co-

ordinates ,1it  to ,i pt  in a p-dimensional space. The 

,1it  to ,i pt  are called scores and represent the 

weightings of the basis functions needed to 

approximately reconstruct the spectrum in the i’th 

row of the data matrix. Similar spectra have similar t-

coordinates and form clusters in the score space. 

The key to finding meaningful clusters is the choice 

of distance measure. In process performance analysis 

the angular measure discussed in Duda et. al., (2000) 

is often more suitable than Euclidian distances. The 

reason for this observation is that the PCA clusters 

frequently take the form of plumes radiating from the 

origin. Raich and Cinar (1997) also observed plumes 

in their analysis of simulated faults in the Tennessee 

Eastman benchmark model. 

Let he vector ,1 , 2 ,
, , ...i i i i pt t tt  be the i’th row 

of matrix pT  in p p

T

X T W E  in a p principal 
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component model. A measure for membership of a 

plume is that the direction of vector it  in the 

multidimensional score plot lies within the same 

solid angle as those of other t vectors belonging 

the plume. The angle between it  and jt  may be 

determined through calculation of the scalar product: 

,cos
i j

i j

i j

t t

t t

where: 

, ,

1

p

i j i k j k

k

t tt t  and 2

,

1

p

i i k

k

tt

3.2 Clustering 

A matrix A , whose elements are ,i j , is to be 

analyzed to find high-dimensional plumes in the PCA 

score plot. Two items in the score plot whose t

vectors point in similar directions give a small value 

of ,i j . The agglomerative hierarchical clustering 

algorithm is based on Chatfield and Collins (1980):  

Algorithm: Agglomerative classification 

Step 1: The starting point is the matrix of angular distances 

with elements ,i j . A text vector of row and column 

headings is also defined which initially is 

1 2 3 4 5 ....  to keep track of the items in the data 

set. For an process performance analysis application the 

items are the N plant profiles in the data set, for a process 

audit the items are the m tags.

Step 2: At the k’th iteration, the smallest non-zero value 

,i j  in the matrix is identified. Its row and column indexes 

i and j indicate the smallest angular separation and these 

are clustered together.  

Step 3: A smaller matrix kA  is then generated from the 

original. It does not have rows and columns for the two 

similar items identified at step 2. Instead, it has one row 

and column that give the distances of all the other items 

from the cluster. The distances are , ,min ,i n j n , i.e. 

the angular distance between the n’th item and whichever 

member of the cluster was closer. For instance, if 9,15  is 

the smallest angular separation in the matrix then rows 9 

and 15 would be deleted and replaced by a new single 

row, and likewise for columns 9 and 15.  

Step 4: The row and column headings are redefined. The 

heading for the new row created at step 3 indicates the 

items that have been combined. For instance, if the 

smallest angular separation at Step 3 had been 9,15

then the new heading would be (9 15).  

Step 5: The results of the k’th step are written to a report 

showing the cluster size defined as the maximum distance 

between items in the cluster, the row heading for the 

cluster formed at iteration k, and the two sub-clusters 

within it.  

Step 6: Steps 2 to 5 are repeated until all the items have 

been clustered. At any stage, the outcome of the next step 

is either another item added to a cluster already identified 

or the combining of two items to start a new cluster. 

A feature of the agglomerative hierarchical 

classification procedure presented here is that it 

provides a text-based report which enables the 

detection of significant clusters as well as automated 

generation of the hierarchical tree plot. 

3.3 Dealing with noise 

There is an assumption underlying a process audit 

which is that any tag whose power spectrum has 

spectral features is being upset by unwanted 

dynamics which could be reduced by control action. 

The assumption is justified in a control systems study 

where the idea is that nothing but random noise 

should be present. The spectrum of random noise is 

broad band and in theory it is flat. Such a spectrum 

maps to the origin in spectral PCA (i.e. the elements 

in ,1 , 2 ,
, , ...i i i i pt t tt  are close to zero) because 

the p w vectors of the model reflect the spectral 

features in the data set. The broadband noise is 

captured by the remaining m p  components and 

appears in the E  matrix. Tags with small values of 

t  are therefore excluded from the hierarchical tree. 

In the case study presented below, the tags with the 

90% longest t vectors were plotted. Therefore, out 

of 60 tags, 54 appear in the tree and the excluded 

ones are classified as broad-band noise.  

3.4 Plotting of the hierarchical tree 

The graphical representation of the hierarchical tree 

can be extracted from the report generated by the 

algorithm of Section 3.2. It utilises an algorithm 

which starts at the top and systematically searches 

down the left and then the right branches and sub-

branches to parse the structure of the tree. The 

algorithm is recursive meaning it calls itself over and 

over again in a nested way until it reaches a leaf of 

the tree. The end result is a set of x  and y

coordinates tracing the path that joins each individual 

item on the horizontal axis to the master node at the 

top of the tree.  

Algorithm: Path Search 

At the current node, 

Step 1: Search left if the next node to the left is not done 

 find description of the next node to the left 

 if the next node to the left is a leaf of the tree 

  set label equal to the item number 

  mark the path to that leaf as done

  return (back to the next highest level of recursion) 

 else if the next node to the left is not done yet 

  call Path Search (recursive call) 

  build the path by adding the y-coordinate of the 
node to the path (the path starts empty) 

 else  

  mark the left node to the left as done.  

Step 2: Search right if  the next node to the right is not done: 

 find the next node to the right  

 If the next node to the right is a leaf of the tree 

  set label equal to the item number 

  mark the path to that leaf as done

  return (back to the next highest level of recursion) 
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 else if the next node to the right is not done yet 

  call Path Search (recursive call) 

  build the path by adding the y-coordinate of the 
node to the path (the path starts empty) 

 else  

  mark the node to the right as done

  mark the current node as done.

Step 3: Plot paths for each leaf as a stairs plot to construct 
the tree from the leaf the tree  

The result is a set of paths, one for each leaf of the 

tree. These paths may be plotted as stair plots to 

construct the tree. 

Some nodes in the classification tree have more than 

two sub-branches, for example Tags 2, 9 and a 

subcluster including 21, 4, and others are joined by a 

single horizontal line at 7.6 degrees in the middle of 

Figure 3. The reason is that the overall maximum 

distance between items in the cluster does not always 

grow when a new item is added. Items join growing 

clusters in turn according to their distance from the 

nearest item that is already in the cluster. However 

their inclusion does not necessarily make the overall 

size of the cluster larger because items already in the 

cluster may be further apart from each other than 

they are from the new item. 

4. CASE STUDY 

4.1 Data sets 

The aim of the case study is to use the hierarchical 

tree derived from spectral PCA to aid and evaluate 

the maintenance activity. The mean centred time 

trends of the data set for the case study are shown in 

Figure 1 and the spectra are in Figure 2. There are 

two panels for each because the data shown are from 

before and after a maintenance shutdown. In fact, 

part of the value of the study is in the presentation of 

these high density plots. Each represents one day of 

running and shows all tags. This is not a standard 

display on an operator’s panel. The hierarchical tree 

aids the detection of tags with similar power spectra 

and the high density plots allow the engineer to 

visually confirm the findings.  

The scaling used in the time trends is referenced to 

the before case. For instance, time trend 5 in the 

before panel has been scaled to unit standard 

deviation and the time trend 5 in the after panel is 

scaled with the same factor. The large deviation in 

Tag 4 in the after panel arises because that time trend 

moved more than the time trend of Tag 4 before 

maintenance. 

The power spectra in the plots are scaled to the same 

maximum peak height for visualization purposes. In 

the spectral PCA computations, however, all spectra 

are scaled to unit power.  

0 1000 2000 3000 4000

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

 9

 8

 7

 6

 5

 4

 3

 2

 1

time/sample interval

before maintenance

0 1000 2000 3000 4000

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

 9

 8

 7

 6

 5

 4

 3

 2

 1

time/sample interval

after maintenance

Figure 1. Time trends before and after maintenance 
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Figure 2. Power spectra before and after maintenance 
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Figure 3. Hierarchical classification tree. Tags with 
black spots are from before maintenance 
data set, white spots are after maintenance.  

4.2 Results

All 60 spectra (30 from before and 30 from after 

maintenance) were analysed together using spectral 

PCA and presented in Figure 3 as a hierarchical 

classification tree. The analysis needed 11 principal 

components to capture 99.5% of the variability in the 

data set. As discussed earlier, 54 of the 60 tags are 

represented in the tree, the remaining tags have broad 

band spectra similar to random noise and mapped 

close to the origin in the Spectral PCA score plot. 

In Figure 3, each spot on the horizontal axis 

represents a complete spectrum from Figure 2. Black 

spots are the spectra before maintenance and the 

white are the spectra after maintenance. The numbers 

below indicate which tag generated the spectrum. 

Clusters in the tree share a common branch into the 

main part of the tree and they represent tags which 

have similar power spectra and hence similar 

dynamic features in their time trends. Clusters are 

clearly visible in the tree; a cluster is a group of tags 

such as 25 and 30 on the extreme right, or the large 

group labelled as spectra have low frequency 

components. The y-axis shows the cluster size as the 

maximum angular separation between any two items 

within the cluster. Some sub-clusters also exist, such 

as tags 5, 7 and 8 which form a distinct sub-group in 

the cluster labelled oscillating before maintenance.

Here, the clusters have been identified by inspection, 

however they can also be detected automatically 

when the length of the branch joining a cluster to the 

main tree exceeds a pre-set fraction of the cluster size 

(both measured on the y-axis). 

Oscillating before maintenance group: A group of 

tags that were oscillating before maintenance had a 

strong spectral peak at about 0.0028 on the 

normalized frequency axis (350 samples per cycle). 

They are Tags 5, 7, 8, 11-13, 19, and 22-29 which 

appear as a cluster. The tree shows tags 20 and 6 

were also participating in the same oscillation before 

maintenance. It is not easy to tell that 20 was 

oscillating from its time trend, but spectral PCA 

detects the oscillation within the noise.  

There are no tags from the after-maintenance data set 

in this group which demonstrates that maintenance 

successfully addressed the plant-wide disturbance.  

Tags 15, 16 and 17: Tags 16 and 17 are clustered 

together in the before-maintenance data set, showing 

their spectra were more similar to each other than to 

any other spectra in the combined data set. The tree 

shows that Tag 1 is similar also. Although Tag 1 has 

spectral content across a broad range it also shares a 

prominent spectral peak with Tags 16 and 17. After 

maintenance, tags 16 and 17 lie in a different cluster 

and are joined by 15 showing that the dynamic 

behaviour of Tags 16 and 17 was changed by the 

maintenance activity The spectrum of tag 15 has 

some low frequency content which is stronger in the 

before maintenance data set. That is why Tag 15 did 

not join the {16, 17} cluster before maintenance. Tag 

1 from the after maintenance data set is not in the tree 

because its spectrum was similar to random noise.  

Low frequency components group:  A cluster in the 

middle of the tree contains numerous tags both from 

before and after maintenance. Their spectra have low 

frequency components in common, and the time 

trends show that they all have slow drifting non-

stationery behaviour. There are more tags in this 

group after maintenance than before. Some of them 

such as 7, 8, 11, 12, 19, 24, 27 and 29, migrated into 

this group once the main oscillating disturbance was 

removed. Many are indicators and are responding to 

long term drifts in ambient or operating conditions.  

Small clusters:  After maintenance there are several 

small clusters. These are: 

5, 13 and 22: They have a broad peak at about  
33 10  on the normalized frequency axis. No other 

tags share this spectral feature. The frequency of 

this spectral feature is very similar to that of the 

main oscillation in the before-maintenance data set. 

The classification tree shows, however, that it is a 

new frequency because the 5, 13 and 22 cluster 

form the after-maintenance data set is not 

connected to the cluster labelled oscillating before 

maintenance.
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25 and 30: They have some spectral content at 

about 38 10  on the normalized frequency axis.  

6 and 10: These tags have a high frequency spectral 

feature at 14 10  on the frequency axis. In fact, an 

inspection of the spectra shows that this feature was 

present before maintenance but was dominated by 

the main oscillation at 0.0028 on the frequency 

axis. It is more prominent after maintenance 

because the interference of the main oscillation has 

been removed.  

Tags not in the tree:  The tags excluded are 10, 18 

and 30 in the before maintenance set and 1, 18 and 

20 in the after maintenance set. Figure 1 shows that 

their time trends do not have any distinctive dynamic 

features, just noise. The benefit of the exclusion of 

tags with small t vectors from the tree is shown by 

considering Tags 6 and 10 in the after maintenance 

data set. They could be mistaken as random by visual 

inspection, however the spectral analysis shows that 

they have a distinctive high frequency peak and they 

therefore appear in the tree.  

5. CONCLUSIONS 

The paper has presented a hierarchical classification 

tree as a mean of visualization of the structure within 

a principal component model of arbitrary dimensions. 

Each item in the tree represents the power spectrum 

from one measurement point in the process and the 

vertical axis is an angle measure that indicates how 

similar the spectra are to one another. An industrial 

case study showed that the tree is useful in 

combination with high density plots of time trends 

and spectra for interpreting and understanding the 

impact of the maintenance activity. 
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