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Abstract: Oscillations in control loops lead to poor controller performance. Stiction in
control valves is one of the major causes of such oscillations. Therefore, the correct
diagnosis of stiction is important. There are several methods for detecting stiction, but
quantification of stiction still remains a challenge. Two parameters are used to model
the stiction phenomenon successfully, namely, deadband plus stickband, ′S′, and slip-
jump,′J ′. It has been observed that the main cause of valve deterioration is the presence
of slip-jump, ′J ′. The higher the value of ′J ′, the more severe is the level of deterioration
of controller performance. Thus, in addition to the estimation of ′S′, an estimate of ′J ′ is
the main challenge in monitoring the condition of a control valve. In this work a method
is proposed to estimate both ′S′ and ′J ′ simultaneously unlike existing quantification
methods where stiction is quantified as a single parameter.
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1. INTRODUCTION

Non-linear effects are often encountered in process
plants. These non-linearities can be due to: (1) Valve
non-linearity, for example due to stiction, deadband
and hysteresis; (2) the presence of non-linear external
oscillations, and/or (3) non-linearity in the process.

The presence of a non-linearity in a control loop often
leads to oscillations in a control loop and hence poor
performance. About 30% of the oscillations in control
loops are due to valve problems (e.g. the presence
of static friction or stiction). Therefore, detection
and quantification of stiction in control valves is an
important issue in the process industry. There are
several stiction detection methods (Choudhury et
al., 2004b; Choudhury et al., 2004c; Horch, 1999;
Singhal and Salsbury, 2005; Stenman et al., 2003;
Srinivasan et al., 2005a; Srinivasan et al., 2005b). But
quantifying stiction still remains a challenge.

Earlier work by (Choudhury et al., 2004c) quantifies
stiction by fitting an ellipse to the pv-op plot and
the maximum width of the ellipse is reported as

1 Corresponding author, E-mail: sirish.shah@ualberta.ca, Tel: +1
(780) 492 5162, Fax: +1 (780) 492 2881.

‘apparent stiction’. Recently, Srinivasan et al. (2005a)
introduced another approach where they exploited the
fact that the presence of stiction has distinct qualitative
shapes or pattern in the controller output, op and the
controller variable, pv signals. They have applied a
Pattern Recognition technique using Dynamic Time
Warping (DTW ) on the pv and op data. First, the
test patterns (for both op and pv) are generated using
the zero crossing data from the raw signals. Then
these test patterns are compared to the actual signal.
If stiction is confirmed then the maximum peak-
to-peak amplitude is reported as stiction. However,
the maximum peak-to-peak amplitude is just the
magnitude of limit cycle and cannot be attributed to
real stiction. Another disadvantage with this approach
is the apriori knowledge of the patterns in the op and
pv due to stiction. The patterns described therein may
not be always due to stiction. Some of those patterns
in the pv and op signals may arise simply due to the
presence of a tightly tuned controller or an oscillatory
disturbance. In addition to these, asymmetric stiction,
which is not uncommon, cannot be detected and
quantified using this approach.

In another method proposed by (Srinivasan et al.,
2005b), a Hammerstein model identification approach
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is explored. A general structure of a Hammerstein
model is shown in figure 1. The non-linear part of
the Hammerstein model is described by a single
parameter stiction model ( (Stenman et al., 2003)).

Fig. 1. General Structure of a Hammerstein Model

It has been observed that the single parameter stiction
model does not depict the true stiction behavior
(Choudhury et al., 2004a), as discussed in section 2.

In this study, the proposed approach uses a two
parameter stiction model proposed by (Choudhury et
al., 2004a) to model the non-linear component of the
Hammerstein model.

The rest of the paper is organized as follows: In
Section 2 a brief discussion of the two parameter
stiction model is provided. This is followed by an
example demonstrating the importance of slip-jump,
J , in loop dynamics. Section 4 describes the proposed
method. Sections 5 and 6 summarize simulation
and experimental results respectively, followed by
concluding remarks in Section 7.

2. WHY USE A TWO PARAMETER MODEL OF
STICTION?

This section briefly discusses the adequacy of a two
parameter stiction model for closed loop simulation
of stiction. Also, the limitations of the one parameter
stiction model proposed by (Stenman et al., 2003)
and used in (Srinivasan et al., 2005b) are briefly
discussed. Before discussing the data-driven stiction
models, a case of an industrial example where a valve
was sticky is presented in order to find the right pattern
of stiction present in a valve operating under closed
loop control configuration.

2.1 An industrial control loop with a sticky valve

Consider a level control loop which controls the
level of condensate in the outlet of a turbine by
manipulating the flow rate of the liquid condensate.
The control valve of this loop is confirmed to have
stiction. In total 8640 samples for each tag were
collected at a sampling rate of 5 s. Figure 2 shows a
portion of the time domain data. The left panel shows
time trends for level (pv), the controller output (op)
which is also the valve demand, and valve position
(mv) which can be taken to be the same as the
condensate flow rate. The plots in the right panel
show the characteristics pv-op and mv-op plots. The
bottom figure clearly indicates both the stickband plus
deadband and the slip jump effects. The slip jump is
large and visible from the bottom figure especially
when the valve is moving in a downward direction. It
is marked as ‘A’ in the figure. The pv-op plot does not

show the jump behavior clearly because the process
dynamics (i.e., the transfer function between mv and
pv) destroys the pattern. The pattern shown in the
actual valve position (mv) vs. controller output (op)
can be taken as a typical signature of valve stiction
because it clearly shows the deadband plus stickband
and the slip-jump. Similar patterns can be found in
many industrial control valves suffering from stiction.
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Fig. 2. Flow control cascaded to level control in an
industrial setting, the line with circles is pv and
mv, the thin line is op

2.2 One-parameter stiction model

A simple one parameter stiction model was proposed
by (Stenman et al., 2003). The model can be
mathematically expressed by the following equation

x(t) =
{

x(t − 1) , if | x(t) − d | <d
u(t) otherwise

Where, x(t) and x(t-1) are the valve output (stem
position) at time ‘t’ and ‘t-1’ respectively, u(t) is the
controller output at time ‘t’ and ‘d’ is the valve stiction
band. For details of this stiction model, interested
readers are referred to (Stenman et al., 2003).

2.3 Two-parameter stiction model

A two parameter model proposed by (Choudhury
et al., 2004a) captures the stiction phenomenon
successfully. The two parameters are: S (Stickband
+ Deadband) and J (Slip-jump). For details on
this stiction model interested readers are referred to
(Choudhury et al., 2004a).

2.4 Comparison between one-parameter and two
parameter stiction model

Figure 3(a) shows a typical valve output (mv), vs.
controller output (op) plot for the one parameter
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stiction model described in (Stenman et al., 2003;
Srinivasan et al., 2005b) while Figure 3(b) shows
the same plot for the two parameter stiction model
proposed in (Choudhury et al., 2004a). Figure 3(a)
is clearly different from the pattern of stiction shown
in Figure 2. It suffices to say that the one parameter
stiction model does not capture the true characteristic
of stiction. Indeed it should not be called a stiction
model, rather it should be defined as a quantization
or a staircase function. On the other hand, the plot
for two parameter stiction model (Figure 3(b)) clearly
matches with the pattern in Figure 2. Thus the two
parameter stiction model is able to adequately capture
the characteristic of valve stiction (Choudhury et
al., 2004a).
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Fig. 3. (a) mv-op for one parameter model (‘d′) (b)mv-
op for two parameter model (S, J)

3. ISSUES IN QUANTIFYING STICTION

3.1 Effect of controller dynamics and process dynamics
on apparent stiction

Earlier work by (Choudhury et al., 2004c; Choudhury
et al., 2005) quantifies stiction by fitting an ellipse
to the pv-op plot and the maximum width of the
ellipse is reported as ‘apparent stiction’. Stiction is
reported as ’apparent’ because the estimate includes
the effect of the process and controller dynamics. The
following simulation example demonstrates the effect
of the controller tuning on the estimation of apparent
stiction.

Figure 4 shows the simulink block diagram used for
generating stiction data. The process model is

G(z) =
1.45z − 1
z4 − 0.8z3 (1)

The controller is implemented in the following form:

C(s) = Kc

(
1 +

1
τi s

)
(2)

The reset time, τI , is fixed at 1 sec and the gain,Kc, is
varied.The Stiction parameters ’stickband+deadband’,
S and ’slip jump’, J are fixed at 3 and 1, respectively.
Three cases, Kc = 0.05, 0.10 and 0.15, are considered
and 1024 samples are generated for each case.

Figure 5 shows the pv-op plot and the fitted ellipse
for the three cases. The apparent stiction reported are:
for Kc = 0.05, 0.10 and 0.15, the estimated apparent
stiction are 5.79, 3.06 and 1.62, respectively. Ideally,

Fig. 4. Simulink block diagram used for generating
stiction data
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Fig. 5. mv − op plot and fitted ellipse (a)Kc = 0.05
(b)Kc = 0.10 (c)Kc = 0.15

it should be same because the same amount of stiction
was used for all cases (S=3 and J=1). A similar effect
of the process dynamics can also be observed on the
value of apparent stiction. Hence the width of the
ellipse in the pv-op plot termed as ’apparent stiction’
cannot be taken as an accurate estimate of stiction.

3.2 The importance of quantifying Slip-Jump (J)

Describing function analysis performed in (Choudhury
et al., 2004a) suggests that for processes without any
integrator, limit cycles in a control loop may occur
only in the presence of slip-jump (J) for the case of a
sticky valve. Moreover, the amplitude and frequency
of the limit cycles depend significantly on the slip-
jump (J). The following simulation results show the
effect of J on the amplitudes and frequencies of the
limit cycles.

The system considered here is the same as in
Section 3.1. In order to observe the impact of J
clearly, the controller parameters are chosen as Kc =
0.15 and τI = 0.15 sec. Figure 6 shows the variation
of the frequency and amplitude of limit cycles with
slip jump (J) keeping S constant (S = 6). For each
case, 1024 points were collected. No oscillations are
observed for the case when there is no slip-jump, i.e.
J=0. Periods of oscillation (Tp) are 250 s, 111 s and 72
s for values of J = 1, 3 and 6, respectively. From this
simulation study, it is clear that both amplitude and
frequency of limit cycles increase with the increase of
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Fig. 6. (a) J=0, no oscillations detected (b) J=1,
Tp=250, amplitude=0.20 (c) J=3, Tp=111, am-
plitude=0.60 (d) J=6, Tp=72, amplitude=1.20.

J . Therefore, the estimation of J is as important as the
estimation of S.

4. METHODOLOGY FOR SIMULTANEOUS
ESTIMATION OF S AND J

Figure 7 shows the detailed flow chart of the
procedure for estimating ′S′ and ′J ′. This is an
iterative optimization procedure to identify both the
stiction model parameters and the process model
simultaneously. The controller output data (op) is
supplied to the two parameter stiction model to
obtain the actual valve output or valve-postion data,
(vo), for a fixed value of S and J . Then, the
predicted valve output, vo, and the process output
data, (pv), are used to identify the process model using
Akaike’s Information Criteria (AIC). The procedure
is repeated for various values of S and J obtained
from a two dimensional grid search. The value of S
and J that gives minimum mean square error for the
controlled process variable (pv) is reported as stiction.
The details of the algorithm are as follows:

• Import process ouput, pv and the controller
output, op.

• Check for non-linearity in the system. In this
work the bicoherence based method proposed by
(Choudhury et al., 2002) is used for non-linearity
detection.

• Choose a value for (Si,Ji) from a two dimen-
sional grid of S and J .

• Use the controller output, op, data and the two-
parameter stiction model with chosen (Si, Ji) to
compute the valve output, vo. This is the non-
linear part of the Hammerstein model.

• Identify the process model (linear part of the
Hammerstein model) using the valve output, vo,
and the process output, pv.

• Then the process output is predicted (pv’) using
the identified process model and the computed
valve output, vo.

• Compute the Mean Squared Error between the
predicted and the actual process output

MSE(Si, Ji) =
N∑

i=1

(pvi − pvi
’)2 (3)

• MSE is computed for all the points in the grid of
S and J . The value (Sm, Jm), for which MSE
is minimum, is reported as stiction.

Fig. 7. Logic flow diagram of the proposed method

The following important points should be considered
in the implementation of the method:

• The prediction, using the identified or known
model and the valve output, is done using a one-
step-ahead predictor. The purpose of using one-
step-ahead predictor is that this makes the overall
procedure less dependent on the process model,
estimation of which is of less interest for this
case.

• There is a possibility that for a particular value
of (S, J) the computed valve output may be
saturated. In this case the identification of the
linear part of the Hammerstein model would
be difficult because the input signal would not
be persistently exciting. This may result in
erroneous results. Therefore, before using the
valve output (vo) for the identification of the
process model, the signal should be should be
examined for possible saturation.

5. RESULTS FROM SIMULATION STUDIES

All simulations were performed using the same
system described in Section 3.1. The controller gain,
Kc = 0.15 and τI = 1 are fixed.

Two scenarios are considered here. First, when the
process model is known i.e. the linear component of
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the Hammerstein model is known. Second, when the
linear part of the Hammerstein model is unknown and
estimated along with the nonlinear part.

Table 1 shows the estimation results using the
proposed method. It is assumed that the process model
is known. The estimated values are close to the actual
values.

Table 1. Comparison of actual and esti-
mated S and J (known model case)

S J
Actual Estimated Actual Estimated

1 1 0 0
1 1 1 1
4 4 2 2
6 6 4 3.5
8 8 8 8
8 8 10 10

10 8 2 0

Table 2 shows the estimation results when an external
disturbance is added to the system with sticky valve.
A sinusoidal input with a frequency of 1 rad/sec and
amplitude of 1 is used as external disturbance. The
process model is assumed to be known. The estimation
is exact in most cases. This indicates that the proposed
method is able to quantify stiction even in presence of
external oscillations.

Table 2. Comparison of actual and esti-
mated S and J in the presence of external

oscillations (known model)

S J
Actual Estimated Actual Estimated

1 1 1 1
4 4 2 2
6 6 4 4.5

10 10 5 5
12 12 4 4
12 13 0 1

In Table 3 estimation results are shown when the
data is corrupted by noise (random noise with zero
mean). Signal to noise ratio (SNR) is computed as
the ratio of the variance of the noise free signal to
variance of the noise. For this the value of S and J are
fixed to 6 and 4 respectively and the data is simulated
with different noise levels in the system. The results
show that the method is relatively insensitive to the
presence of noise, and therefore it should work well
when applied to real process data.

Table 3. Prediction in presence of noise (S
= 6 and J = 4) (known model)

SNR Estimated (S) Estimated (J)
100 6 3.5
50 6 4
25 6 4

12.5 6 4
10 6 3.5

Table 4 shows the results for the case when it is
assumed that the process model is not known. The
algorithm was not supplied with the process model.
For all cases, S has been estimated correctly except

when S <J (S = 4, J = 8). But such cases, where
J > S, are rarely encountered in real life. Slip-jump
is also estimated correctly for most cases.

Table 4. Comparison of actual and esti-
mated S and J, unknown model case

S J
Actual Estimated Actual Estimated

1 1 0 0.5
4 4 2 2
6 6 4 4
10 10 10 7.5
10 10 8 8
10 10 2 2
4 2 8 8

6. RESULTS FROM PILOT PLANT
EXPERIMENTS

For the verification of the proposed method, data
was generated using a laboratory scale setup of
a tank system in the Computer Process Control
Laboratory in the Department of Chemical and
Materials Engineering at the University of Alberta.
Data is generated for two control loops: flow and
level(cascade) control.

6.1 Flow Control Loop:

The schematic of the process is shown in Figure 8.
First of all, the control valve was checked for possible
presence of stiction using the so called bump test or
the valve travel test and it was found to be stiction free.
Then the two-parameter stiction model was used to
introduce valve stiction within the software as shown
in Figure 8. The signal from the flow controller (FC)
is supplied to the stiction model (with already known
S and J). The output of the stiction model is then
provided to the flow control valve (FV ).

Figure 9 show the process output (pv) and the con-
troller output (op) for the system for (S, J) = (2, 1).
Clearly, stiction introduces limit cycle behaviour in the
loop. The results of stiction estimation are provided in
Table 5. Two cases are considered for this loop. For
both cases, estimated S and J are in good agreement
with the actual S and J .

6.2 Level Control Loop:

The schematic of the control loop is shown in figure
10. This is a cascaded loop. The level controller
(LC) signal acts like a set point for the flow
controller (FC).Process output (pv, the level) and
the controller output (op) for (S, J) = (1, 1) are
shown in Figure 11.Results of stiction estimation
are summarized in Table 5. The method successfully
quantifies S and J .
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Fig. 8. Schematic for the Flow loop
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Fig. 9. Process output (flow rate, PV) and controller
output (OP) for the flow control loop

Fig. 10. Schematic of the cascaded level loop control
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7. CONCLUSIONS

In this work, the effect of controller dynamics on
the apparent stiction and the impact of J on the
frequency and amplitude of limit cycles due to stiction
have been demonstrated using simulation examples.
A method is proposed to simultaneously estimate
both S (stickband+deadband) and J (slip-jump). The
stiction model parameters and the process model are
jointly identified using an optimization approach. The

Table 5. Estimated S and J from experi-
mental data

S J
Data Actual Estimated Actual Estimated
Flow Loop 1 1 1 1

2 2 1 1.5
Level Loop 1 1 1 1

2 1.5 1 0.5

proposed method has been tested successfully on
simulated and experimental data. The method needs
only routine operating data from a control loop. The
stiction model used in this method in its slightly
modified form can also handle asymmetric stiction.
Therefore it is possible to extend the method to
estimate parameters of asymmetric stiction model.

The proposed method can also be extended to cases
when the plant model is non-linear in itself. In such
cases, to correctly estimate S and J , knowledge of the
presence and structure of the non-linearity is required.
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