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Abstract: The developments in technologies are expanding the boundaries and broadening 
the domain of what is technically and economically feasible to achieve in the application 
of data reconciliation activities in manufacturing plants. They also, naturally, incorporate 
additional issues and open the opportunities for new research activities. For example, 
recent developments on model-centric technologies to support plant operations based on 
advanced process modelling technologies opened the opportunities for performing large-
scale parameter estimation – data reconciliation applications in complex dynamic 
industrial environments. On the other hand, new sensor technologies are becoming 
available based on recent advances in microprocessor-based instrumentation and digital 
communications. They provide opportunities for the realization of novel sensor network 
architectures towards a truly distributed environment for data processing and 
reconciliation. In this presentation we will discuss current research activities combining 
efforts in these areas towards the future operation of manufacturing plants.  Copyright © 

2005 IFAC
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1. INTRODUCTION 

Rational use of the large volume of data generated by 
manufacturing plants requires the application of 
suitable techniques to improve their accuracy and to 
extract useful information about the operational 
status of the process. A number of technologies (data 
reconciliation, trend analysis, fault diagnosis, etc) 
have been the subject of active research during last 
20 years with important advances. Among these data 
processing strategies, Data Reconciliation (DR) is 
one of the most typical approaches to obtain a 
consistent set of data. 

Recent technological developments are expected to 
have a strong impact, broadening the domain of 
applications of data processing and reconciliation 
activities in manufacturing plants. In this 
presentation we will restrict the scope and will focus 
on the impact of two key technologies: the recent 

progress made towards model-centric approaches for 
support of manufacturing activities and the 
developments on sensor/sensor networks 
technologies expanding the capabilities of existing 
sensors.  

During the last decade, general-purpose modelling 
tools have reached a level of maturity that allows the 
definition and solution of model-based problems of 
unprecedented complexity. Nowadays, state-of-the-
art modelling, simulation and optimisation 
environments (MSOEs) have expanded their 
languages to account not only for the definition and 
solution of dynamic simulation activities, but also the 
declaration of dynamic optimisation and parameter 
estimation/data reconciliation activities with 
comparable generality and flexibility. However, 
while commercial and academic modelling 
technologies have largely engaged in developing 
frameworks and methodologies for tackling the 
model development process, complementary 
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frameworks and mechanisms to help conceptualising 
and implementing “models” of process-engineering 
problems to support plant operation remain virtually 
unexplored. Progress in this direction, 
unquestionably, will expand the scope of what is 
technically feasible to achieve in the application of 
data processing and reconciliation activities in 
manufacturing plants. This will provide opportunities 
for performing large-scale applications within 
complex dynamic industrial environments and, 
additionally, integrating these capabilities with other 
activities for support of process operations into a 
single and consistent model-centric framework. In 
this work we will present a series of initiatives 
towards this vision. 

On the other hand, recently sensors have received 
greater attention than in the past. This is due to: 
greater demands placed on all aspects of plant 
operation and improvements in technology. In terms 
of plant operation, competition has resulted in higher 
product quality and plant efficiency. Safety standards 
are constantly rising and measurements are the 
primary means of identifying potentially hazardous 
circumstances. In terms of improvements in 
technology, new sensor technologies are becoming 
available (extending the properties that can be 
measured, the environment in which they can be 
sampled). Microprocessors-based instrumentation 
and digital communications are having profound 
effect on the capability and/or functionalities of the 
sensor. These developments provide the opportunity 
for the realization of federated sensor network 
architectures towards a truly distributed environment 
for plant operation. In this presentation we will 
discuss a new conceptual model for the next 
generation of sensor devices, which incorporates 
activities such as DR at the sensor level thus 
improving diagnosis/classification and reducing the 
computational load at the controller levels. This type 
of architecture encompasses the extra capabilities 
required for the next generation of sensors and sensor 
networks and accommodates the additional demands 
required for modern manufacturing.  

2. MODEL-CENTRIC TECHNOLOGIES AND 
DATA RECONCILIATION/ PARAMETER 

ESTIMATION 

2.1 Background 

Throughout the last decades, the computer-aided 
process engineering (CAPE) community made 
considerable progress in two strategic areas: the 
technical development and commercialisation of 
general-purpose modelling, simulation and 
optimisation environments; and the standardisation 
of open interface specifications for component-based 
process simulation. High-level equation-oriented 
declarative modelling languages have gained 
increased acceptance as the most appropriate 
framework to tackle the modelling process when full 
control over the scope and detail of the process 
model is required (Foss et al., 1998) because they 

provide the modeller with a series of sophisticated 
tools and mechanisms that contribute enormously to 
increase the efficiency of the modelling process. 

An important advantage of equation-oriented 
modelling languages is the intrinsic independence 
between mathematical models and solution methods. 
By segregating the mathematical definition of any 
given model from structural, symbolic or numerical 
solution algorithms, a single model description can 
be used to accommodate for a potentially large 
number of complementary activities. Another major 
advance was the creation of high-level declarative 
languages to describe a wide range of advanced 
model-based problems such as dynamic optimisation 
and parameter estimation with a degree of generality 
and flexibility comparable to existing dynamic 
simulation languages. These days, commercial 
modelling languages have evolved into multi-
purpose process-engineering modelling tools which 
we shall denote as “modelling, simulation and 
optimisation environments” (MSOEs). 

As the CAPE community continues developing and 
validating individual process models, the incentive 
behind developing and implementing model-based 
technologies grows. In the mid 1990s, developers 
and end-users were confronted with the reality that 
the accessibility and usability of model descriptions 
embedded within modelling environments was very 
limited. To address this problem, the CAPE 
community initiated the CAPE-OPEN (CO) and 
Global CAPE-OPEN (GCO) projects. CO focussed 
on providing standard mechanisms to support a two-
fold long term vision according to which: process 
modelling components (PMCs) built or wrapped 
upon the standard could be incorporated into process 
modelling environments (PMEs) straightforwardly; 
and model descriptions declared within PMEs 
supporting the standard would be accessible to 
external modelling tools.. This way, developers 
would be able to assemble software components 
from heterogeneous sources to solve complex model-
based problems. The GCO consortium continued 
revising and updating existing standards and creating 
new ones for technologies beyond modelling and 
simulation. Within the scope of this work, the CO 
standards will be used as an enabling paradigm to 
support the creation of the advanced framework 
proposed later in this paper and as a point of 
reference to inspire some of its most innovative 
features. 

2.2 Model-Centric Framework for Support of 

Manufacturing Activities

Following the previous discussion, it is clear that the 
creation of a model-centric framework that supports 
the definition of rigorous model-based activities and 
promotes the transfer of knowledge between 
complementary model-based software applications 
will extend the viability of model-centric 
technologies. In a series of papers, Rolandi and 
Romagnoli (2006a) presented a framework of such 
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characteristics that enables the definition and 
implementation of model-based process-engineering 
problems typical of industrial environments. 

The conceptual core of the framework was conceived 
according to the following vision. The framework 
was tailored to use mathematical models of process 
systems derived on the basis of mechanistic 
descriptions of natural phenomena. Although in 
principle the framework is applicable to a 
widespread of process systems, plant-wide models of 
industrial manufacturing plants were the main 
motivation of this work. Of course, as a result of 
rigorous mechanistic modelling of plant-wide 
industrial systems, the framework was tailored to 
deal with complex large-scale process models. In this 
work, the idea of modelling for multiple purposes 
was pursued, so that several model-based 
components were able to use a single fundamental 
model of the process to solve a widespread range of 
problems, implementing the notion of a model-
centric framework. This integration crystallised the 
vision of a consistent solution of process-engineering 
problems, seeding synergistic interactions across 
model-based activities due to a consistent model 
formulation among the software components. Last 
but not least, the framework addressed a series of 
problems of relevance to industrial manufacturing 
operations, such as: model-based process simulation 
and optimisation, parameter estimation, data 
reconciliation and advanced process control. It is 
worth to emphasising, though, that the 
estimation/reconciliation component of interest to 
this work is just one of the modules of the entire 
framework discussed in Rolandi and Romagnoli 
(2006a). 

Figure 1 provides a conceptual representation of how 
the different model-based components of the 
proposed model-centric framework are expected to 
support the operation of an industrial process system. 
As expected, the data pre-processing environment 
precedes all modules that make use of raw plant data, 
since it is imperative to obtain a consistent set of data 
by reconstruction of the process trajectories for the 
robust execution of any subsequent tasks. The 
estimation environment incorporates dynamic 
parameter estimation and dynamic data 
reconciliation activities, which make use of 
consistent data sets for the estimation of process 
operating parameters and evaluation of process 
measurement biases. The information gained from 
these activities is presented to the decision-makers, 
who then have a chance to make informed decisions 
on issues such as process instrumentation and 
equipment maintenance and inventory analysis. 
Consistent data sets are also provided to the 
simulation environment, which extracts meaningful 
information from past operating conditions. These 
process analysis activities are complemented by 
process improvement tasks such as process 
optimisation, transition planning studies and 
constrained real-time model-based optimisation and 

control, in a sequence of execution that that reshapes 
raw plant data into useful process knowledge and, 
hence, levers the chances for informed operative and 
supervisory decisions (see Rolandi and Romagnoli, 
2006a). 

In this work, we suggest extending the software 
architecture proposed by the CO standards (CAPE-
OPEN Consortium, 2000) by introducing a new 
software object: the Problem Definition Environment 
(PDE). As sketched in Figure 2, the PDE manages 
the definition of advanced model-based problems by 
interacting with both the Process Modelling 
Executive (PMEs) and the user, while the PME 
performs the corresponding model-based activity by 
coordinating the calls to several Process Modelling 
Components (PMCs). These PMCs contain the 
mathematical description of the process model, and 
they also provide other services such as physical 
property calculations and numerical solution 
algorithms (Braunschweig et al., 2000). While the 
standardisation of open interfaces of the PME and 
PMCs has been the focus of the CO/GCO projects, 
the communication between the PDE and other 
elements of the architecture is regulated by a series 
of mechanisms intrinsic to the framework described 
in this work. These mechanisms entail the 
manipulation of the so-called “Data Model 
Templates” (DMTs) and “Data Model Definitions” 
(DMDs) (Rolandi and Romagnoli (2006a). 

In the software architecture shown schematically in 
Figure 2, the MSOE (a PME and several PMCs) can 
be seen as a software tool for managing the 
development of mathematical models and, ultimately, 
coordinating the execution of the model-based 
activity, i.e. the MSOE is essentially a model builder 
and activity executive. On the other hand, the PDE is 
conceived as a software tool for supporting the 
definition of model-based problems, i.e. how to use 
plant data and the process model in the context of 
realistic process-engineering problems, which 
requires additional skills and expertise; in other 
words, the PDE is basically a problem builder. 

2.3 A Framework for Joint Parameter Estimation 

and Data Reconciliation

As discussed above, a novel paradigm for the 
definition of rigorous model-based problems is now 
possible through the introduction of the PDE. The 
PDE manipulates the so-called Data Model 
Templates (DMTs) and Data Model Definitions 
(DMDs). In this section, we will briefly discuss the 
structure and purpose of the two data models relevant 
for the definition of hybrid data-driven/model-based 
parameter estimation data reconciliation problems. 
These data structures are the so-called Process Data 
Object data model (PDO) and the Dynamic 
Estimation Problem data model (DEP). 
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Fig. 1. The conceptual definition of the integrated framework for model-centric support of process operations. 
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Fig. 2. The architecture of the framework. 

DEP model: Contains data determining the 
structure of a general dynamic estimation 
problem; for example, a valid instance of this 
data model links explicitly model variables to 
control/measured (input/output) process 
variables and corresponding process 
instrumentation, and determines the form of the 
objective function (estimator). 

PDO model: Contains data representing raw 
experimental process data in a form fit for 
hybrid empirical/mechanistic modelling; for 
instance, a valid instance of this data model 
associates the reconstructed dynamic 
trajectories of the input/output process variables 
(retrieved from process instrumentation) to 
model variables. 

The distinction between these two structures is 
substantiated by the fact that it is not convenient to 
associate an experimental data set with a given 
estimation case-study, and vice versa. Overall, the 
DMT/DMD mechanism creates an innovative means 
to embed process knowledge and expertise on the 
definition of model-based problems, as well as 

increased opportunities for documentation and re-use 
of case-studies. The manipulation of these 
DMTs/DMDs is the scope of the PDE software 
object. In addition, the PDO and DEP data models 
encapsulate corporate expertise on the use of high-
level declarative modelling languages, the process 
model and the process system, and they make 
possible the definition and execution of rigorous 
estimation/reconciliation problems of interest to 
operations personnel.  

As described by Rolandi and Romagnoli (2005), an 
environment for the definition of generic dynamic 
estimation problems of the characteristics described 
above shares common characteristics with the 
simulation and optimisation environments of the 
integrated framework. Effectively, similarities with 
the simulation environment are due to the fact that 
estimation- reconciliation problems are based on 
experimental plant data and, therefore, there is a need 
for data pre-processing, conditioning and 
reconstruction of process trajectories. Similarities 
with the optimisation environment are given by the 
fact that dynamic estimation experiments are a 
particular type of dynamic optimisation problems and, 
hence, additional structural information (i.e. 
information apart from that contained in the 
mathematical model of the process) is needed to fully 
determine the nature of the estimation/reconciliation 
experiment/case-study. This is a point-of-synergy 
which can be exploited during the design, 
implementation and use of an integrated model-
centric system for support of process operations. 

2.4 A Case Study: Application to the Pulping Section 

of a Pulp and Paper Mill

The challenge associated to the joint parameter 
estimation and data reconciliation case-study 
proposed in this section lies on the complexity of 
both the industrial process system and the actual 
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model-based problem. Unfortunately, the points-of-
synergy between the solution of this process-
engineering problem and other analysis and 
improvement tasks supported by the integrated 
model-centric framework is out of the scope of this 
manuscript.The goal of this case-study is to reconcile 
the process model and the plant data focussing on the 
closure of the general mass balance of the continuous 
pulping system. The estimation horizon is 1440min 
(24hr) and the window for reconstruction of process 
trajectories (Rolandi and Romagnoli, 2006b) is 
30min for both input and output variables. A subset 
of 26 input process variables is used to imitate the 
input behaviour of the continuous process system. 
Among them 21 are controlled variables (set-points 
of PID control loops) and 5 are uncontrolled 
measured variables (disturbances). 

The wood chip impregnation factor is a measure of 
the flowrate of steam condensate bounded to the 
interstitial void space between wood chips after the 
atmospheric pre-steaming step at the chip bin and 
before entering to the chip meter. Conventionally, 
the magnitude of this parameter would be obtained 
from the P&ID; however, changes in wood handling 
operations and operating conditions of the chip bin 
will change its nominal value. Since the magnitude 
of this parametric variable affects the closure of the 
mass balances, it will be chosen as a decision 
variable of the joint parameter estimation and data 
reconciliation problem. Additionally, we will 
estimate the magnitude of the pre-multiplier of the 
fundamental kinetic model of the Kraft pulping 
reactions occurring within the continuous cooking 
digester. Finally, we will also estimate the magnitude 
of the bias of three flow measurement devices: 
overall white liquor addition; wash filtrate addition 
to the digester’s bottom; and black liquor extraction 
from the upper screens of the digester (see Table 1). 
The measurements of eight sensors are used for the 
purpose of estimation (Rolandi and Romagnoli, 
2006b). The potential for model-based joint 
parameter estimation and data reconciliation of a 
large-scale complex industrial process system is 
demonstrated in this case-study: the problem results 
in the estimation of five parametric process variables 
(three of them are measurement biases) from an 
experimental data pool of eight measured variables 
and twenty-six control variables. 

Table 1. Parametric variables of the continuous 
pulping area

DCS Tag Variable Description 

EE212.KinPreMult Kinetic pre-multiplier 

EE103.ChipImpFctr Wood chip impregnation 
factor 

FT212A.MB Overall white liquor 
addition flow 

FT212H.MB Wash filtrate addition 
flow to digester bottoms 

FT212C.MB Upper extraction screen 
extraction flow 

Table 2 shows the optimal estimates, confidence 
intervals and lower and upper bounds for the 

parametric variables. From this information we can 
calculate that the coefficient of variation for a 95% 
confidence on the individual estimates of the 
parametric variables EE212.KinPreMult and 
EE103.ChipImpFctr are 1.4% and 6.0% respectively; 
for all practical purposes, this is an indication of a 
satisfactory accuracy of estimation. The coefficient 
of variations of FT212A.MB and FT212H.MB based 
on a 95% confidence (Table 2) are reasonably small 
(3.4% and 4.0%, respectively), which is an indication 
of satisfactory accuracy of the estimates. On the 
other hand, the coefficient of variation corresponding 
to FT212C.MB is fairly large (46.7%), indicating a 
large uncertainty in the determination of this 
measuring device bias. In spite of this, the process 
variable can still be successfully estimated given the 
data pool used in this case-study. Figure 3 shows the 
fulfilment of the general mass balance of the 
continuous pulping system before and after 
reconciliation. 

From a practical viewpoint, it was our aim to 
estimate those biases which have a strong impact on 
inventory analysis, or whose quantification is vital 
for other operational purposes (e.g. inferential soft-
sensing). In the case of an industrial continuous 
pulping system, the most significant sources of 
revenue and expenses are likely to be the production 
of pulp, the cost of chip consumption and the cost of 
evaporation of weak black liquor (Rolandi and 
Romagnoli, 2006b). Fortunately, the cost of 
evaporation of weak black liquor can be partially 
reconciled from the estimate of the bias of the upper-
screen extraction flow measurement. Interestingly, 
the 6.4% error of this process measurement (see 
Table 2) is associated to a material stream which 
accounts for nearly 32% of the overall weak black-
liquor extraction flow from the continuous cooking 
digester at this nominal production level 
(~3.1m3/min). Additionally, the treatment of the 
black liquor in the evaporation area comprises 
approximately 56% of the variable costs of operation 
of the continuous pulping area (~ 88$/min). Hence, a 
6.4% measurement error on such a critical process 
stream is equivalent to a production accounting 
miscalculation of approximately 0.50 million US$ 
per year, or an inventory analysis error of roughly 32 
thousands cubic meters per year. This analysis 
demonstrates the economic incentive for advanced 
dynamic data reconciliation. 

-5

0

5

10

15

0 4 8 12 16 20 24

V.PV

M.PV

M.RV

Fig. 3. Fulfilment of general mass balance (relative 
error [%] vs time [hr]); volumetric flow 
(measured process variables) and mass flow 
(calculated and reconciled process variables). 
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Table 2. Optimal estimates and confidence intervals

 EST CI(95%) LB UB CV [%] ERR [%] 

EE212.KinPreMult [adim] 3.34E-01 4.73E-03 3.29E-01 3.39E-01 1.42 n/a 

EE212.ChipImpFctr [m3/kg] 1.83E-01 1.09E-02 1.72E-01 1.94E-01 5.96 n/a 

FT212A.MB [m3/min] 7.32E-02 2.52E-03 7.06E-02 7.57E-02 3.44 7.1 

FT212H.MB [m3/min] 1.69E-01 6.76E-03 1.62E-01 1.75E-01 4.01 8.2 

FT212C.MB [m3/min] 6.51E-02 3.04E-02 3.47E-02 9.55E-02 46.7 6.4 

Recently, Romagnoli and co-workers (Wang and 
Romagnoli, 2003) have presented a complete 
framework for Robust Data Reconciliation based on 
the generalized-t (GT) distribution, which can 
accommodate a family of distribution and thus 
providing extra flexibility as well as efficiency and 
optimality. The drawback of this approach is that 
actual statistical characterization of each sensor needs 
to be estimated, thus increasing the computation load 
if done at a centralized level. 

In our proposed sensor network (Joe et al, 2005), 
some of these tasks can be delegated to the individual 
sensor (self-learning) in a decentralized manner, 
reducing the overall load at the higher level (control 
system) and at the same time providing extra 
functionalities for the sensor allowing the 
implementation of robust self-checking strategies at 
the local level. Two key things to be formulated in 
realising the sensor network are the architecture and 
the intelligence (or task allocation) of the sensor 
network. The following two subsections will discuss 
these, with a focus on GT-based data reconciliation. 
The last subsection presents application of the 
proposed sensor network to an integrated pilot-scale 
plant. 

2.5 Architecture of the Sensor Network

The architecture of the sensor network defines the 
interconnection structure and functional relationships 
among the intelligent nodes in the network. The 
federated processing architecture is adopted in our 
proposed sensor network. Federated means that 
certain responsibilities are allocated to nodes at 
higher tier, but many functions are performed 
autonomously by nodes at lower tier (Sastry and 
Iyengar, 2005). Figure 4 shows the proposed network 
architecture. The network hierarchy consists of two 
tiers, each corresponding to an information 
processing level. Clusters are formed, i.e. each upper 
level node manages a few lower level ones. Each 
cluster corresponds to a process unit, i.e. the lower 
level nodes are none other than sensors measuring the 
variables of the process unit. We termed the lower 
level nodes as cluster members and the upper level 
ones as cluster heads. Nodes at the upper level can be 
considered as virtual sensors, in that they do not sense 
any physical phenomena, but mainly function as 
information processing units, performing tasks that 
are multivariate in nature such as data reconciliation. 
As such, cluster heads must collect information from 
their members in order to carry out their tasks. The  

cluster head and its members may require different 
computational capabilities. 

The communication scheme is depicted by the lines 
connecting the nodes, i.e. cluster members 
communicate with their respective cluster heads, 
while cluster heads also communicate with one 
another. This results in different requirements of 
communication and networking capability and 
interface of the cluster heads as compared to the 
cluster members.  

2.6 Intelligence of the Sensor Network: Distributed 

Data Rectification

The federated processing in a sensor network 
provides a potentially more efficient alternative 
implementation of the GT-based DR strategy than the 
centralized scheme. The GT-based DR strategy 
comprises two procedures that can be distributed in 
the federated sensor network: statistical 
characterization of sensor data (using GT distribution) 
and reconciliation of data using the obtained 
statistical characteristics. Since each sensor node 
(cluster member) is intelligent, the statistical 
characterization of data can be performed at the 
sensor level, resulting in self-learning of each sensor. 
Besides relieving the higher level from the 
computational burden and compressing the data to be 
communicated, self-learning also provides a signal 
model which is useful in reducing uncertainty in the 
measurement data and is the basic information that 
can be used for further processing that is not limited 
to DR only. The steps involved in sensor self-learning 
include the collection of a set of data points from 
which the sensor characteristics are extracted, and the 
estimation of the parameters of the statistical 
distribution of the data itself. This estimation can be 
mathematically expressed as: 

),,,(logmaxarg},,,{

1

qpufqp i

n

i

GT  (1a) 

where: 

ii yu  (1b) 

pqppp
GT

quqpBq

p
qpuf

/1/1/1 ||1),/1(2

),,,( (1c)

y is the i-th data point, n is the number of data points 
in the current data set, µ is the estimate of the process 
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variable and {p, q, } are the parameters of the GT 
distribution function fGT, i.e. the statistical 
characteristics of the sensor.  

The second step of the distributed GT-based DR 
strategy, i.e. the reconciliation step, is performed at 
the level of cluster head (process unit) due to its 
multivariate nature. The cluster head is therefore 
responsible for consolidating data from each member 
sensor in the cluster, and subsequently performing the 
computation to reconcile the data. Mathematically, 
this computation can be expressed as: 

0)(s.t.)q,p,|(ulog-Max GT
x

xgf  (2) 

where u = y-x, y is the measurements, T is the 
estimates of the p process variables and g(x) denotes 
the set of conservation equations. Note that the values 
of {p,q, } used in this estimation are the self 
characteristics communicated by each individual 
sensor. 

2.7 A Case Study: Application to an Integrated Pilot-

Scale Plant

Experiment Environment. An experimental platform 
comprising plant simulator, sensor (cluster member) 
simulator, and cluster head simulator is constructed.  

Plant Simulator: The virtual version of a process 
unit within an integrated pilot-scale plant is 
developed. This unit, a continuous stirred tank 
reactor (CSTR) with a cooling coil, is simulated 
using Matlab/Simulink. Measured variables 
include: Fin (feed flow rate), Tin (feed 
temperature), F (effluent flow rate), T (effluent 
temperature), Fc (cooling water flow rate), Tcin 
(inlet cooling water temperature), Tc (outlet 
cooling water temperature), Trx (reaction vessel 
temperature).  

Cluster Member (Sensor) Simulator: The cluster 
member consists of two parts: physical sensing 
and data processing. Accordingly, the simulator 
consists of noise generator and saturation 
function to mimic sensing, and a self-learning 
module to realize the data processing segment. 
For each of the eight measured variables of the 
CSTR, a cluster member is assigned. A cluster 
head manages and monitors these eight cluster 
members. To realize the mapping between 
cluster heads and cluster members, each cluster 
member is labelled by unique identification. The 
cluster members will transmit this identification 
and its estimated self/ signal characteristics {µ, p, 
q, } to the respective cluster heads and cluster 
head will use this information to perform data 
reconciliation. 

Figure 4: Federated sensor network architecture 

Cluster Head Simulator: The cluster head 
consists of communication controller, task 
controller and task modules. The communication 
controller is responsible for both external 
communication, i.e. with the cluster members 
and with the user interface, and internal 
communication, i.e. with the task controller. The 
task controller oversees all the tasks assigned to 
the cluster head. As such, the distributed data 
reconciliation as described in Section 3 is one of 
the underlying intelligence of the task controller. 
In our original proposal (Joe et al, 2005), besides 
data reconciliation, the intelligence also includes 
fault diagnosis and sensor reconstruction. The 
implemented framework is shown in Figure 5.  

Experiment Results
Self-learning: The results of self-learning for a 
few different noises are depicted in Figure 6, 
demonstrating considerably accurate 
characterization of the sensor data. 

Data Reconciliation: The formulated distributed 
GT-based data reconciliation is performed by 
cluster head using the characteristics obtained by 
self-learning in each cluster member. Figure 7 
compares the estimation accuracy (ratio of 
absolute error of reconciled to that of measured 
data) of the proposed distributed method with 
the conventional centralized one according to 
Wang and Romagnoli (2003). Comparable 
performance is observed, hence demonstrating 
the viability of the distributed scheme. 

Figure 5: Overview of modules in the experimental 
setup 
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Figure 6: Statistical characterization of sensor data 

Figure 7: Estimation errors of the distributed and 
centralized data reconciliation approach 

3. CONCLUSION & FUTURE WORK 

The impact of emerging technologies on what is 
technically and economically feasible to achieve in 
the application of data reconciliation activities in 
manufacturing plants has been discussed and 
demonstrated. 

Recent developments on model-centric technologies 
to support plant operations based on state-of-the-art 
process-engineering software tools were shown to 
provide the opportunities for performing large-scale 
parameter estimation – data reconciliation 
applications in complex dynamic industrial 
processing systems. The results of the industrial case-
study were assessed from the perspective of 
production accounting and inventory analysis, and 
found a great incentive for the Process Industries to 
benefit from these advanced methodologies for plant 
data management. An environment for the definition 
of generic dynamic estimation problems of the 
characteristics described above shares common 
features with complementary simulation and 
optimisation environments. This is a point-of-synergy 
which can be exploited during the design, 
implementation and use of an integrated model-
centric system for support of process operations. 

New sensor technologies based on recent advances in 
microprocessor-based instrumentation and digital 
communications provided opportunities for the 
realization of novel sensor network architectures 
towards a truly distributed environment for data 
processing and reconciliation. The proposed federated 
architecture of intelligent sensor networks provides a 
flexible underlying framework for distributed data 
processing and rectification. We have presented a 

reformulation of the conventionally centralized robust 
partially adaptive data reconciliation scheme into a 
distributed scheme based on the federated sensor 
network. Experiment results showed highly 
comparable performance in terms of estimation 
efficiency, hence confirming the feasibility of the 
distributed scheme. Furthermore, in decentralizing the 
data reconciliation task, intelligence in the form of 
self-learning is incorporated into sensors. The 
presented distributed scheme serves as the first step 
towards a holistic distributed treatment of sensor data 
using the federated sensor network. This includes, but 
is not limited to, multi-resolution sensor data 
modeling, robust filtering and missing sensor data 
reconstruction. 
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